The Notion of Delegation (§2.1.4)

* Delegation in a specific version of
CSE 1710 abstraction

* Abstraction:

— the abstract description of a process (or thing)
is a version in which the details have been

i removed and replaced with a simpler

Delegation substitute;

— that which is filtered away determines the
type of abstraction

Lecture 4

Examples of types of abstraction Abstraction by Parameterization

+ this applies to physical objects (in a simple case)
— what to do: see the object’s properties as detailed versions of the

* Abstraction by parameterization object’s property parameters
. . — if you filter away the property values from the property
» Abstraction by delegatlon parameters, you get abstraction by parameterization

» detailed version: this car is a BMW, it has 15” rims and is silver

* abstract version: a car is a thing has a maker, has a wheel size and
has a colour

* even more abstract version: a vehicle has a means of locomotion
and a means of steering

— this is also true of tanks and trains, but the means of locomotion and
the means of steering are different in these cases

Abstraction by Delegation

* applies to processes that perform tasks:

— what to do: see the “how” as a detailed
version of the “what” when it comes to doing
things

— if you filter away the “how” from the “what”,
you get abstraction by (task) delegation

* detailed version: grow grain, grind grain, combine
with yeast to make dough, bake dough

* abstracted version: bake bread

No Delegation of Task...

import java.lang.System;

public class Area
{
public static void main(String[] args)
{
int width = 8;
int height = 3;
int area = width * height;
System.out.println(area) ;

} + computes the area of a rectangle.

» code handles both (of data) and
(of area).

Little/No Delegation Some Delegation Much Delegation
decide on grain type decide on grain type decide on grain type

buy the appropriate seed type;]
learn about growing techniques
grow grain locate and buy grain from
i~ farmer

+ packed in different sizes

harvest grain

bring grain inside to grinding - transport grain to grinding

room place

buy grinder (if needed) — get grain milled

load hopper of grinder + the mill may stipulate input | place and receive order: “I'd like
conditions, e.g., min size of a loaf of <fill in the blank>"
packaging

grind grain (repeat until enough
grain obtained)

secure yeast, water secure yeast, water

prepare dough prepare dough

bake bread bake bread

let bread cool and slice let bread cool and slice

eat bread eat bread " eatbread

No Delegation of Task...

_ Weightin Pounds a
BMI= (i casumaes)) X703 e WAl 10 comp e s
or for an particular individual

= Weight in Kilograms
BMI = (Height in Meters) x (Height in Meters)

double weightInLbs = 170.0;
int heightInInches = 5*12+9; // this is the height 5'9";
double bmi = weightInlLbs

/ (heightInInches*heightInInches) * 703;

PS: + code handles both (of data) and
what if (Of BMI)_
weightInLbs

were an int ???

Delegation of Task... (§2.1.1) Delegation of Task+Storage...
(§2.1.2)

// 8.5 inches is approx 22 cm

// 11 inches is approx 28 cm

Rectangle letterSizedPaper = new Rectangle (22, 28);
double area = letterSizedPaper.getArea();

double weight = 170.0;
String height = "5'9";
double bmi = ToolBox.getBMI (weight, height);

¢ Data storage

— no delegation * Data storage
— “We” (the main method) take care of data storage by — delegation to object of type Rectangle
declaring ints — we make use the object by using its reference
letterSizedPaper

° ComPUtatlon — We can access width and height by

— delegation to a static method within a class. + letterSizedPaper.getWidth() and

. letterSizedPaper.getHeight ()
* Any method must be one of the following: + Computation

— static — delegation to a method within the class.
— non-static 9 10
About methods... About method invocation...
* A method must belong to a class. * A method invocation must be followed by
— methods cannot exist in any other fashion its parameters

* Methods perform tasks and are named accordingly: — a pair of parenthesis with zero or more

— actions or verbs parameters sandwiched in between
* e.g., computeBMI (double, String)

) -e.g.,
— complete predicate . .
* ToolBox.getBMI (weight, height) ;

* output.println(“Hello”) ;

* e.g., isEnabled()

* Methods have returns:
— void or a data type

11 12

About method invocation...

* Classes provide services to clients.
— methods are one category of service
— fields are another category of service
* Clients (you) must indicate the source of the
method: [one of the following]

— ClassName.method(...) [this is for static methods]
. eg,
— ToolBox.getBMI (weight, height) ;
— variable.method(...) [this is for non-static methods]
- eg,

- output.println(“Hello”) ;

- letterSizedPaper.getArea() ; 13

The class diagram of a utility class in the TYPE library:

« utility »
type::1lib: :ToolBox

computeBMI (int, String): double

The class diagram of a utility class in the Java library:

« utility »
java::lang: :Math

PI: double

sgrt (double) : double

Copyright © 2006 Pearson Education
Canada Inc.

Java By Abstraction

215

What is “signature” ?

* the signature of a method is
— the method name together with
— the types of its parameters
-e.g.,
* computeBMI (double, String)
* println(String)

— The method’s return is not considered to be
part of the method’s signature

* The methods in a class must be unique

14

A class diagram from the TYPE library:

type: :1lib: :Rectangle

width: int
height: int

getArea(): int
getCircumference () : int
getDiagonal () : double
getWidth () : int
setWidth (int) : void

A class diagram from the Java standard library

java::util::Date

getTime () : long
toString(): String

Copyright © 2006 Pearson
Education Canada Inc.

Java By Abstraction

216

UML: An Object Diagram

type: :1ib

: :Rectangle

width: int
height: in

t

getAreal() :

int

A

r: Rectangle

width = 3
height = 4

Copyright © 2006 Pearson Education Canada Inc.

s: Rectangle

width = 2
height = 5

Java By Abstraction

Take Home Points

* Do you know
— the difference between an object reference and an
obiect?
— how to recognize the use of a static method?

— how to recognize the use of a non-static method?
— how to declare an object reference?

— how to assign the object reference to refer to a
particular object?

— how to use a static method?
— how to use a non-static method?

18

