CSE 1710

Lecture 21
Net-Centric Programming, Part 11

Part2
Learning Outcomes
— Understand and describe the basics of the HTTP
protocol
— Use the URL and URLConnection classes to:
« to instantiate useful objects

+ to retrieve content from web servers
— Use string processing to manipulate query strings

— Understand the concept of a class hierarchy
* run-time checking using instanceof

— Use the HttpURLConnection class to examine
the request and response messages



The Basics of HTTP

« HTTP stands for Hypertext Transfer Protocol
« HTTP is used to transmit resources, not just files.

* A resource is some chunk of information
— Something that can be identified by a URL (it's the R in URL).

— Examples of resources:
- files
» adynamically-generated query result
« the output of a CGl script
» adocument that is available in several languages.

The Basics of HTTP

« HTTP uses a model in which there is a client and a server
role (the “client-server” model):

— An HTTP client opens a connection and sends a request message to
an HTTP server

— A HTTP server then returns a response message to the client,
usually containing the resource that was requested

— After issuing the response, the server closes the connection.



The Basics of HTTP

» an HTTP transaction is defined as:
— a single request from a client and the corresponding response from
the server
+ it often happens that a given pair of a client and a server
pairing will have several transactions in sequence
— however, no connection information is maintained between
transactions
— this is called “stateless” and is what is meant by “http is a stateless
protocol”

The Basics of HTTP

* There are two types of messages:
— request messages
— response messages

» Both kinds of messages consist of:

— an initial line

— zero or more header lines
* e.g., the “Date” field represents the date and time at which the message was

originated

— ablank line

— (optionally, but not necessarily) a message body (aka “payload”)
* e.g. afile, query data, or query output



Example — visit www.yorku.ca

here is the request

GET /web/index.htm HTTP/1.1 initial line

Host: www.yorku.ca

User-Agent: Mozilla/5.8 (Macintosh; Intel Mac 0S X 10.7; rv:6.0.2) Gecko/20100101 Firefox/6.9.2
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*/*;q-0.8

Accept-Language: en-us,en;q=9.5 header lines
Accept-Encoding: gzip, deflate

Accept-Charset: IS0-8859-1,utf-8;0-0.7,%;g-0.7

Connection: keep-alive

Cookie: __utma=27695668.440770357.1291300324.1321558349.1322083439.188; __utmz-27695668.1321558349.187}129.

] blank line

here is the response

HTTP/1.1 20@ OK initial line
Date: Wed, 23 Nov 2011 21:24:04 GMT
Server: Apache/1.3.34 (Ubuntu) FrontPage/4.0.4.3

Content—Type' text/html: charset-iso-8859-1 i <IDOCTYPE html PUBLIC "-//W3C//DID XHTML 1.0 Transitional//EN"
X . header lines ;o4
Via: 1.1 optera.ccs.yorku.ca -
Keep-Alive: timeout-15, max=93 Http-equiv-Content Type" content="text/htal; charset=Ute-
Connection: Keep-Alive o Uriversity in Torente, Ca
. < nte ty, York University, T«
Transfer-Encoding: chunked Canpue, Feale Canpes, Sehalich School of Business; Ogoese Fali

. Arts & Professional Studies, Faculty of Education, Faculty of H
blank line , Faculty of Science & Engineering, Faculty of Graduate Studies,
| Redefine the Possible’/>

the html content 7

Serving Content as per the HTTP Protocol

1. Listen on port 80

2. If and when an HTTP request arrives (“GET” or “POST"), start a

process to handle it (“fork”)

3. Extract the path/file from the URL

4. Check whether file exists
If not, return status 404.

5. Check whether file is reachable & readable (file permissions?)
If not, return status 403

6. Determine the content type (static vs dynamic)

Static Content Dynamic Content (CGI)

7. Return with status 200 (OK) 7. Masquerade as file owner.

and a type header. 8. Check that file is executable by

8. Serve file as the payload. owner.

9. Close HTTP session. If not, return status 500.
Or, on keep-alive, wait brief time for 9. Run the file and capture its output.
another request. 10. Check the validity of the output.

Not valid? Return status 500.

Valid? Return status 200 (OK), and the

output as the payload.
8



Response Codes

100 series
Sessional update from server.
200 series
Success!
300 series
Redirect.
400 series
Client error.
500 series
Server error.

For full detail, you can look at the full specification at:
http://kb.globalscape.com/KnowledgebaseArticlel0141.aspx

Revisit L20App4

Recap each of the statements

10



Issues with L20App4

We see that L20App4 effectively performed a single transaction
How and Where?

» there was a request message —the openConnection() method causes the
instantiation of a URLConnection object
— the URLConnection object, upon instantiation, attempts to establish contact to the
server

— things could go wrong, for instance an java.net.UnknownHostException may be
thrown

— if the connection is established, then the URLConnection object will issue the request
message

» there was a response message
— the server will issue a response, which the URLConnection object will capture
— things could go wrong with the connection and an exception will be thrown

How can we examine the specifics of the request and response messages?
We have a URLConnection object, L21App1
but it is a specific version of this: a HitpURLConnection 11

Issues with L20App4

How can we treat the URLConnection object as a HitpURLConnection
object?

Approach #1: L21App1

— cast the object at run-time
— vulnerable if the connection object is not actually an http connection

— this example points out the difference between early binding (p.103) and late binding
(at run-time)

Approach #2:
— cast the object at run-time, but do so only conditionally L21App2

12



How to check the return code

The HitpURLConnection class offers the following services:

String : getRequestMethod() L21App3
int : getResponseCode()
String : getResponseMessage()

13

Query Strings

Let’s have a look at

14



