
CSE  1710	


Lecture  21	

Net-­‐‑Centric  Programming,  Part  II	


Learning Outcomes!
–  Understand and describe the basics of the HTTP 

protocol"
–  Use the URL and URLConnection classes to:"

•  to instantiate useful objects  "
•  to retrieve content from web servers"

–  Use string processing to manipulate query strings"

–  Understand the concept of a class hierarchy"
•  run-time checking using instanceof"

–  Use the HttpURLConnection class to examine 
the request and response messages"

2	


Part2"



The Basics of HTTP  
!
•  HTTP stands for Hypertext Transfer Protocol"
•  HTTP is used to transmit resources, not just files. "
•  A resource is some chunk of information "

–  Something that can be identified by a URL (it's the R in URL). "
–  Examples of resources: "

•  files"
•  a dynamically-generated query result"
•  the output of a CGI script"
•  a document that is available in several languages. "

3	


The Basics of HTTP  
"
•  HTTP uses a model in which there is a client and a server 

role (the “client-server” model):"
–  An HTTP client opens a connection and sends a request message to 

an HTTP server!
–  A HTTP server then returns a response message to the client, 

usually containing the resource that was requested"
–  After issuing the response, the server closes the connection."

4	




The Basics of HTTP  
"
•  an HTTP transaction is defined as:"

–  a single request from a client and the corresponding response from 
the server"

•  it often happens that a given pair of a client and a server 
pairing will have several transactions in sequence"
–  however, no connection information is maintained between 

transactions"
–  this is called “stateless” and is what is meant by “http is a stateless 

protocol”"

5	


The Basics of HTTP  
!
•  There are two types of messages:"

–  request messages"
–  response messages"

•  Both kinds of messages consist of: "
–  an initial line"
–  zero or more header lines"

•  e.g., the “Date” field represents the date and time at which the message was 
originated"

–  a blank line"
–  (optionally, but not necessarily) a message body (aka “payload”)"

•  e.g. a file, query data, or query output "

6	




Example – visit www.yorku.ca  
"
here is the request"

"
"
"
"
here is the response"

"

7	


initial line"

initial line"

header lines"

header lines"

blank line"

blank line"

!Serving Content as per the HTTP Protocol 
1. "Listen on port 80  
2. "If and when an HTTP request arrives (“GET” or “POST”), start a  

"process to handle it (“fork”) 
3. "Extract the path/file from the URL  
4. "Check whether file exists 

" "If not, return status 404. 
5. "Check whether file is reachable & readable (file permissions?) 

" "If not, return status 403  
6. "Determine the content type (static vs dynamic) 
	
Static Content"

7. Return with status 200 (OK) 
and a type header."
8. Serve file as the payload."
9. Close HTTP session."

Or, on keep-alive, wait brief time for 
another request."

Dynamic Content (CGI)"
7. Masquerade as file owner."
8. Check that file is executable by   "
     owner."
   If not, return status 500."
9. Run the file and capture its output."
10. Check the validity of the output."
    Not valid? Return status 500."
    Valid? Return status 200 (OK), and the 
output as the payload."
"
"

8	




Response Codes!
!
    100 series"
        Sessional update from server."
    200 series"
        Success!"
    300 series"
        Redirect."
    400 series"
        Client error."
    500 series"
        Server error."

9	


For full detail, you can look at the full specification at:!
http://kb.globalscape.com/KnowledgebaseArticle10141.aspx!

Revisit L20App4!
!
Recap each of the statements!
!

10	




Issues with L20App4!
"
We see that L20App4 effectively performed a single transaction"
How and Where?"
•  there was a request message –the openConnection() method causes the 

instantiation of a URLConnection object"
–  the URLConnection object, upon instantiation, attempts to establish contact to the 

server"
–  things could go wrong, for instance an java.net.UnknownHostException may be 

thrown"
–  if the connection is established, then the URLConnection object will issue the request 

message"
•  there was a response message"

–  the server will issue a response, which the URLConnection object will capture"
–  things could go wrong with the connection and an exception will be thrown"

How can we examine the specifics of the request and response messages?"
"We have a URLConnection object, "
"but it is a specific version of this: a HttpURLConnection! 11	


L21App1"

Issues with L20App4!
"
How can we treat the URLConnection object as a HttpURLConnection 
object?"
"
Approach #1: "

–  cast the object at run-time"
–  vulnerable if the connection object is not actually an http connection"
–  this example points out the difference between early binding (p.103) and late binding 

(at run-time)"
"
Approach #2: "

–  cast the object at run-time, but do so only conditionally"

12	


L21App1"

L21App2"



How to check the return code!
"
The HttpURLConnection class offers the following services:"
"
String : getRequestMethod()!
int : getResponseCode()!
String : getResponseMessage()!

13	


L21App3"

Query Strings!
"
Let’s have a look at http://www.cse.yorku.ca/~roumani/jba/ase/"

14	



