
CSE 1710	

Lecture 19	

Strings: Recap and Review of Core Concepts	

What is the difference between a string
object, a string reference, and a string literal? !

String s1 = new String(“apple”);!
String s2 = “orange”;!
boolean isTheSame = s1==s2;!
boolean hasTheSameState = s1.equals(s2);!
boolean hasTheSameState2 = s2.equals(s1);!
–  a string object is an entity created at run-time, either

through explicit or implicit creation!
•  explicit -> the use of the String constructor !
•  implicit -> the use of the String “literal”!

–  a string reference is a variable that stores an
address in the JVM heap space or the special value
null; !
•  the address corresponds to the location of a string object!

–  a string literal is a a syntactic construct that causes
a string object to be created. 2	

RQ6.1!

True or false: anything that can be done
using the StringBuffer class can also be
done using the String class? !
Why do we need the StringBuffer class?!
•  True (with enough additional statements and/or

objects)!
•  the key difference is the mutability of the objects!
•  StringBuffer allows us to create mutable

objects.!
•  StringBuffer provides mutators, String does not:!

–  insert(int, String)!
–  append(String)!
–  delete(int, int)! 3	

RQ6.21!

What is a regular expression? 
!
•  A string, possibly consisting of special characters,

that is interpreted as a pattern specification!
In which contexts would a string be interpreted as
a regular expression?!
•  as a parameter to:!

–  replaceAll(String, String)!
–  replaceFirst(String, String))!
–  matches(String)!

•  NOT:!
–  in the string constructor!
–  indexOf(String), etc…!

4	

RQ6.25!

Predict the outcome of the following fragment:!
final int A = 7;!
final int B = 4;!
StringBuffer sb = new StringBuffer(“University”);!
sb.delete(A, sb.length()).insert(A, sb.charAt(B));!
output.println(sb);!

•  How to answer questions such as this one:!
–  first, recognize that the fourth line can be decomposed:!

sb.delete(A, sb.length());!
sb.insert(A, sb.charAt(B));!

–  second, read the API for delete(int, int) and
insert(int, String)!

5	

Ex 6.11!

L19App2!

Derive the correct REGEX:!
final String REGEX = ?!
String ss = input.nextLine();!
output.println(ss.replaceAll(REGEX,”x”));!

!
E.g., if !

!ss=“2456 24567: 23546:42356”!
output:!

!“2456 x x42356”!

•  first, break the task into smaller tasks!
–  match any single digit followed by an colon!
–  match any multiple digit number followed by a colon!

6	

Ex 6.13!

L19App1!

What is the difference between an empty string
and a null string?!

!
•  an empty string is a string object!

–  its state is the character sequence that consists of a 0-
length sequence!

•  a null string is…!
–  it refers to a string reference!
–  a reference can be one of two possibilities:!

•  an address at which a string object can be found!
•  a reserved keyword null !

–  a “null string” is a misnomer; it should be “null
string reference” – a reference that has the value null!

7	

Ex 6.3a!

L19App3!

What is wrong with the statement “A null string
has zero length”?!

!
•  a null string does not have any sort of length!
•  length refers to the number of characters in the

character sequence (a string object’s state)!
•  only string objects has character sequences!
•  a null string is actually referring to a string

reference!
–  the reference has a value!
–  this value can be a number or null !

8	

Ex 6.3b!

Explain out the append method of StringBuffer
works.  
Could this method have been made void?!

StringBuffer buf = new StringBuffer(“hi”);
buf.append(“ there”);!

•  the character sequence of the passed string is
appended to the end of the character sequence
of the object that is being mutated!

•  somewhat equivalent to !
String s = buf.toString() + “ there”;!
buf = new StringBuffer(s);!

•  Could have been void, but then we could not use
the following: 
buf.append(“ you”).append(“ !”);! 9	

Ex 6.22!

What is a wrapper class, and why is it needed?!

•  a wrapper class is a class that corresponds to a
primitive type!

int ! !Integer!
double !Double!
byte! !Byte!
boolean !Boolean!
…and so on!

•  it provides allows us to represent primitive values
as objects!

•  the class definitions provide useful services (both
static and non-static)!
–  e.g., Integer.parseInt(String)!
!

10	

Ex 6.17!

Write a program that reads a string containing
two space-delimited integers from the user and
outputs their sum.!
E.g., given “12 8” the output should be 20!
!
Identity the steps!

1.  read input!
2.  divide the string into the two components!
3.  transform each component from a string object to an

int value!
4.  add the int values and output the sum!

Strategy!
–  do steps 2-4 first, then step 1 last!

11	

Ex 6.14!

L19App4a,  
L19App4b !

