CSE 1710

Lectures 11, 12
Memory Diagrams, Input Validation

Background Material

» Selected readings from JBA concerning
memory diagrams
—sec 1.2.3
—sec 3.3.1
—sec4.2.1,42.2,4.2.3

What are memory diagrams?

* a visualization of the heap space that is
allocated to the java virtual machine (JVM) at
run time

» the heap space is a portion of working memory
used by the JVM for dynamic memory allocation

— Key aspects of dynamic memory allocation
- allocate memory to the Java program as the program needs
it
« free memory for re-use when it is no longer needed

JVM basics

* when an app is compiled, the resulting byte code will
contain the specification of which classes, if any, are
required during run time.

— the byte code for those classes, in turn, will indicate the class
files upon which they depend

— thus, an app may depend on many classes, either directly or
iIndirectly
* when an app is invoked by the JVM, all of the classes
upon which the app depends must be available to the
JVM

— the JVM must be able to find the corresponding *.class file on
the hard drive.

— the class path says where to look

JVM basics

* when an app is compiled, the resulting byte code will
contain the specification of which classes, if any, are
required during run time.

— the byte code for those classes, in turn, will indicate the class
files upon which they depend

— thus, an app may depend on many classes, either directly or
iIndirectly
* when an app is invoked by the JVM, all of the classes
upon which the app depends must be available to the
JVM

— the JVM must be able to find the corresponding *.class file on
the hard drive.

— the class path says where to look

JVM basics

1. the class loader
— loads the class definition that contains the main method

— loads any and all class definitions (byte code) of classes that are used
by the app”*

2. bytecode execution

— execute the byte code that corresponds to the first statement of the
main method.

— then the byte code corresponding to the second line of the main
method.

— And so on... until there are no further statements to be invoked.

3. Tidy shut down.

*strictly speaking, some classes are loaded on demand, but this complicates
things and we will assume for the purposes of this course that all of the
required classes are loaded at the outset). 6

Example

import java.lang.Math;

(=

public class MyApp {

W

public static void main(String[] args) {
double val;
val = Math.PI;

wm

=)

~3

s}
10 }

Memory
Diagrams

up to but not
. . . These memory
|nCIUd|ng ||ne 6 addresses are made

up - we don't know
exactly where in the
heap these class
definitions are placed.
But for the purposes of
this exercise, the main
point is to show that
the class definitions
need to be loaded
somewhere.

class definition of
MyADp

Symbol Table

class definition of
Math

Var Name Type Location

The symbol table is
empty at the outset -
no variables have been
declared (yet)

Memory
Diagrams

up to and
including line 6
(variable
declaration)

val =>

Step 2:

SM says | will use the
memory blocks starting
at location 2000 in the
heap for this. | need 8
blocks, since the type
of this variable is
double (and double
means 8 blocks). This
spot is ok because |
have 8 contiguous
blocks.

(This memory address
is made up - we don't
know exactly where in
the heap the SM will
use, but for the
purposes of this
exercise, the main
point is to show that it
uses a set of blocks
somewhere.)

500

1000

PN
oo
oo
-

N
o
o
-~

class definition of
MyApp

class definition of
Math

Step3: (in green to distinguish it
from the other steps)

SM puts the information about the
variable val in the symbol table

Symbol Table \ |
Var Name Type

Locatlc::_)
val double | 2000

Step1:

JVM says to SM, | need to declare a
variable of type double and it is called
val.

SM says ok, | will locate a place in
the heap space, | will mark it off as
being in use (so nothing came come
along later and use it also) and place
that information in my symbol table

Memory
Diagrams

up to and
including line 7
(variable
assignment)

Step 1:

Evaluate the RHS of the
assignment statement.
This entails obtaining the
value that is stored by
Math.PI

The JVM finds this value
inside the class definition
of Math.

The value looks

something like this:
00110010
10110110
11111000
00110010
00110010
10110110
11111000
00110010

Itis 8 bytes large and
some sequence of 0's
and 1's that gets
deciphered according to
the IEEE standard for
doubles to the decimal
value of
3.141592653589793.
If the value were of type
long, it would also be 8
bytes but it would be
deciphered according to
the two's complement
standard. The same 8
bytes of 0's and 1's would
instead correspond to a
different decimal number
(albeit an integer number)

500

1000

Step 2:

class definition of
MyApp

class definition of
Math

3.141592653589793

Check type compatibility - both LHS
and RHS are double, so the
assignment can be done.

Symbol Table
Var Name Type Location
val double 2000

e
\

Step 3:

Do the assignment.

JVM finds that the location of val is
2000, so it knows to place the value
3.141592653589793 at that
location.

(Actually, the 8 bytes of 0's and 1's
get written here, but we'll write the
decimal counterpart here for the sake
of readability)

Example — object creation

1 1import java.util.Date;

2

3 public class L12Appl {

4= public static void main(String[] args) {
5 Date d;

6 d = new Date();

”

co
eyt

11

500 | class definition of
emory
Symbol Table

| |
Diagrams T T Lo
g 1000 | class definition of

java.util.Date

o
S

up to but not
including line 5

The symbol table is
empty at the outset -
no variables have been
declared (yet)

Memory
Diagrams

up to and
including line 5
(the variable
declaration)

Step 2:

SM says | will use the
memory blocks starting
at location 2000 in the
heap for this. | need 8
blocks(*), since the
type of this variable is
an object and object
references are 8 bytes.
This spot is ok
because | have 8
contiguous blocks.

(*) assumes 32-bit
JVM; there are also 64-
bit JVM
implementations

500

1000

class definition of
L12Appl

class definition of
java.util.Date

Step3: (in green to distinguish it
from the other steps)

SM puts the information about the
variable val in the symbol table

Symbol Table \ |

Var Name Type Locatlc:rj
d Date 2000

Step1:

JVM says to SM, | need to declare a
variable of type Date and it is called
d.

SM says ok, | will locate a place in
the heap space, | will mark it off as
being in use (so nothing came come
along later and use it also) and place
that information in my symbol table

Memory
Diagrams

up to and
including the
RHS of line 6
(object
construction)

Step 1:

Evaluate the RHS of the
assignment statement.
This entails object
creation.

Use the services of the
Date object to construct a
new object. 4=
The JVM places the
object somewhere in the
heap space that is
appropriate (large
enough). This location
has some address (in this
example it is 3000)

500

1000

L_,,. 3000

class definition of
L12Appl

class definition of
java.util.Date

Symbol Table

Var Name
d

Type

Date

Location

DO
2000

Date
object

Memory
Diagrams

up to and
including the
entire line 6
(object
construction and
reference
assignment)

500

Step 1: 1000
Evaluate the RHS of the
assignment statement.

This entails object

creation.

Use the services of the
Date object to construct a
new object.

The JVM places the 2007
object somewhere in the

heap space that is

appropriate (large

enough). This location

has some address (in this
example it is 3000)

L__,,,. 3000

class definition of
L1ZAppl

class definition of
java.util.Date

3068

Date
object

Step 2:

Check type compatibility - both LHS
and RHS are Date objects, so the
assignment can be done.

Symbol Table

Var Name Type Location
d Date 2000

e
\

Step 3:

Do the assignment.

The JVM knows the location of the
Date object is 3000, so it knows to
place the value 3000 at the location
corresponding to variable d .

Actually, the bytes in location
2000-2007 will be a 64-bit binary
representation of the decimal location
3000.

Example — object creation

1 1import java.util.Date;

N

3 public class L12App2 {
4= public static void main(String[] args) {
5 Date d;

6 d = new Date();
7 Date dl;

8 dl = new Date();
9 // 1S d==d1?

10 }

11 }

16

Example — object equality

1 1import java.util.Date;

Vi

3 public class L12App3 {

4= public static void main(String[] args) {
5 long now = System. currentTimeMillis();
b Date d;

7 d = new Date(now);

8 Date di;

9 dl = new Date(now);

10 // 1S d==d1?

11 System.out.println(d==dl);

12 System.out.println(d.equals(dl));

13 //how do you explain this??7?

14

15 }

17

Input Validation —
Exception-Based Approach

boolean cond = amount < 0;
String msg = “The inputted amount was negative”;

ToolBox.crash(cond, msqg);

18

Input Validation —
Message-Based Approach

boolean cond = amount < 0;
String msg = “The inputted amount was negative”;
1if (cond) {
output.println(msg);
}
else {

//rest of program

}

19

Input Validation —
Friendly Approach

boolean cond = amount < 0;

String msg = “The inputted amount was negative”;

for (n=input.nextInt(); n<=0; n=input.nextInt()

{
output.println(msg);

}

20

