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Last class: proofs
Different techniques
Proofs vs counterexamples (connections 

with quantifiers)
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Uniqueness proofs
• E.g. the equation ax+b=0, a,b real, a≠0 

has a unique solution.
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The Use of Counterexamples
All prime numbers are odd

Every prime number can be written as the 
difference of two squares, i.e. a2 – b2.
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The role of conjectures
• 3x+1 conjecture

Game: Start from a given integer n. If n is 
even, replace n by n/2. If n is odd, replace 
n with 3n+1. Keep doing this until you hit 
1.

e.g. n=5 → 16 → 8 → 4 → 2 → 1
Q: Does this game terminate for all n?
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Elegance in proofs
Q: Prove that the only pair of positive 

integers satisfying a+b=ab is (2,2).

• Many different proofs exist. What is the 
simplest one you can think of?
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More proof exercises
• If n+1 balls are distributed among n bins 

prove that at least one bin has more 
than 1 ball

• A game
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Meaningful diagrams
• Pythagoras
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Meaningful diagrams - 2
• Sum of an arithmetic series (from

http://www.tonydunford.com/images/math-and-
geometry/sum-of-number-series/SumOfOdd.jpg)
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Meaningful diagrams - 3
• Sum of a geometric series (from

http://math.rice.edu/~lanius/Lessons/Series/one.gif)
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Meaningful diagrams - 4
• 1/4 + 1/16 + 1/64 + 1/256 + ... = 1/3

(from http://www.billthelizard.com/2009/07/six-visual-
proofs_25.html)

http://www.billthelizard.com/2009/07/six-visual-proofs_25.html
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Next
Ch. 2: Introduction to Set Theory
• Set operations
• Functions
• Cardinality
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Sets
• Unordered collection of elements, e.g.,

– Single digit integers
– Nonnegative integers
– faces of a die
– sides of a coin
– students enrolled in 1019N, W 2007.

• Equality of sets
• Note: Connection with data types
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Describing sets
• English description
• Set builder notation

Note: 
The elements of a set can be sets, pairs 

of elements, pairs of pairs, triples, …!!

Cartesian product:
A x B = {(a,b)| a ∈ A and b ∈ B} 
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Sets of numbers
• Natural numbers
• Whole numbers
• Integers
• Rational numbers
• Real numbers
• Complex numbers
• Co-ordinates on the plane
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Sets - continued
• Cardinality – number of (distinct) elements
• Finite set – cardinality some finite integer n
• Infinite set  - a set that is not finite

Special sets

• Universal set
• Empty set φ (cardinality = ?)
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Sets vs Sets of sets
• {1,2} vs {{1,},{2}}
• {} vs {{}} = {φ}
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Subsets 
• A ⊆ B:  ∀x ( x ∈ A  → x ∈ B)
Theorem: For any set S, φ ⊆ S and S ⊆ S.

• Proper subset: A ⊂ B:  ∀x ( x ∈ A  → x ∈
B) ∧ ∃ x ( x ∈ B ∧ x ∉ A) 

• Power set P(S) : set of all subsets of S.
• P(S) includes S, φ.
• Tricky question – What is P(φ) ?

P(φ) = {φ}
Similarly, P({φ}) = {φ, {φ}}
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Set operations
• Union – A ∪ B = { x | (x ∈ A) ∨ (x ∈ B)}
• Intersection - A ∩ B = { x | (x ∈ A) ∧ (x ∈ B)}

Disjoint sets - A, B are disjoint iff A ∩ B = φ
• Difference – A – B = {x | (x ∈ A) ∧ (x ∉ B)}

Symmetric difference
• Complement – Ac or Ā = {x | x ∉A} = U - A
• Venn diagrams
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Laws of set operations
• Page 130 – notice the similarities with 

the laws for Boolean operators 
• Remember De Morgan’s Laws and 

distributive laws.
• Proofs can be done with Venn 

diagrams.
E.g.: (A ∩ B) c = Ac ∪ Bc

Proofs via membership tables (page 131)
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Cartesian products
• A x B
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Introduction to functions
A function from A to B is an assignment of 
exactly one element of B to each element 
of A.

E.g.: 
• Let A = B = integers,  f(x) = x+10
• Let A = B = integers,    f(x) = x2

Not a function
• A = B = real numbers f(x) = √x
• A = B = real numbers, f(x) = 1/x 
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Terminology
• A = Domain, B = Co-domain
• f: A → B (not “implies”)
• range(f) = {y| ∃ x ∈ A f(x) = y} ⊆ B
• int floor (float real){ … }
• f1 + f2, f1f2
• One-to-one INJECTIVE
• Onto SURJECTIVE
• One-to-one correspondence BIJECTIVE



24

Operations with functions
• Inverse f-1(x) ≠ 1/f(x)

f -1(y) = x iff f(x) = y 
• Composition: If f: A → B, g: C → A, then 

f ° g: C → B, f°g(x) = f(g(x))
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Graphs of functions



26

Special functions
• All domains: identity ℑ(x)

Note: f ° f –1 = f -1 ° f = ℑ

• Integers: floor, ceiling, 
DecimalToBinary, BinaryToDecimal

• Reals: exponential, log
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Special functions
• DecimalToBinary, BinaryToDecimal
• E.g. 7 = 1112 , 10012 = 9
• BinaryToDecimal – n = 10012 :
• n = 1*23 + 0*22 +0*21 + 1*20 = 9

• DecimalToBinary – n = 7: 
• b1 = n rem 2 = 1, n = n div 2 = 3
• b2 = n rem 2 = 1, n = n div 2 = 1
• b3 = n rem 2 = 1, n = n div 2 = 0. 
• STOP
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Special functions – contd.
• Changing bases: In general need to go 

through the decimal representation
• E.g: 1017 = ?9

• 1017 = 1*72 +0*71 + 1*70 = 50
• Decimal to Base 9: 
• d1 = n rem 9 = 5, n = n div 9 = 5
• b2 = n rem 9 = 5, n = n div 9 = 0.
• STOP
• So 1017 = 559
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Special functions – tricks
• Changing bases that are powers of 2:
• Can often use shortcuts.
• Binary to Octal:
• 10111101 = 2758

• Binary to Hexadecimal:
• 10111101 = BD16

• Hexadecimal to Octal: Go through 
binary, not decimal.
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Sequences
• Finite or infinite
• Calculus – limits of infinite sequences 

(proving existence, evaluation…)
• E.g.

– Arithmetic progression (series)
1, 4, 7, 10, …

– Geometric progression (series)
3, 6, 12, 24, 48 … 
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Similarity with series
• S = a1 + a2 + a3 + a4 + ….. (n terms)
• Consider the sequence

S1, S2, S3, … Sn, where
Si = a1 + a2 + … + ai

In general we would like to evaluate sums 
of series – useful in algorithm analysis.

e.g. what is the total time spent in a 
nested loop?
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Sums of common series
• Arithmetic series

e.g. 1 + 2 + … + n (occurs in the analysis of 
running time of simple for loops)

general form Σiti, ti= a + ib 
• Geometric series

e.g. 1 + 2 + 22 + 23 + … + 2n

general form Σiti, ti= ari

• More general series (not either of the 
above)
12 + 22 + 32 + 42 + … + n2
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Sums of common series - 2
• Technique for summing arithmetic series

• Technique for summing geometric series

• More general series – more difficult
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Caveats
• Need to be very careful with infinite 

series
• In general, tools from calculus are 

needed to know whether an infinite 
series sum exists.

• There are instances where the infinite 
series sum is much easier to compute 
and manipulate, e.g. geometric series 
with r < 1.
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Cardinality revisited
• A set is finite (has finite cardinality) if its 

cardinality is some (finite) integer n.
• Two sets A,B have the same cardinality 

iff there is a one-to-one correspondence 
from A to B

• E.g. alphabet (lower case)
• a b c …..
• 1 2 3 …..
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Infinite sets
• Why do we care?
• Cardinality of infinite sets
• Do all infinite sets have the same 

cardinality?
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Countable sets
Defn: Is finite OR has the same cardinality 

as the positive integers. 

• Why do we care? 

E.g.
– The algorithm works for “any n”
– Induction!
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Countable sets – contd.
• Proving this involves (usually) 

constructing an explicit bijection with 
positive integers. 

• Fact (Will not prove): Any subset of a 
countable set is countable. 

Will prove that 
• The rationals are countable!
• The reals are not countable
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The integers are countable
• Write them as

0, 1, -1, 2, -2, 3, -3, 4, -4, ……
• Find a bijection between this sequence 
and 1,2,3,4,…..
Notice the pattern:
1 → 0 2 → 1      So f(n) = n/2 if n even
3 → -1      4 → 2                     -(n-1)/2 o.w.
5 → -2      6 → 3
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Other simple bijections
• Odd positive integers

1 → 1    2 → 3   3 → 5    4 → 7 ….
• Union of two countable sets A, B is 

countable:
Say f: N → A, g:N → B are bijections
New bijection h: N → A ∪ B
h(n) = f(n/2) if n is even

= g((n-1)/2) if n is odd.
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The rationals are countable
• Show that Z+ x Z+ is countable.
• Trivial injection between Q+, Z+ x Z+.
• To go from Q+ to Q, use the trick used 

to construct a bijection from Z to Z+.
• Details on the board.
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The reals are not countable
• Wrong proof strategy:
- Suppose it is countable
- Write them down in increasing order
- Prove that there is a real number 

between any two successive reals.

- WHY is this incorrect?
(Note that the above “proof” would show 

that the rationals are not countable!!)
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The reals are not countable - 2
• Cantor diagonalization argument (1879)
• VERY powerful, important technique.
• Proof by contradiction.
• Sketch (details done on the board)

- Assume countable
- look at all numbers in the interval [0,1)
- list them in ANY order
- show that there is some number not 
listed
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Notes
• The cardinality of neither the reals nor 

the integers are finite, yet one set is 
countable, the other is not.

• Q: Is there a set whose cardinality is “in-
between”?

• Q: Is the cardinality of R the same as 
that of [0,1) ?
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