
11/7/2011 1

Math/CSE 1019:
Discrete Mathematics for Computer Science

Fall 2011

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/1019

11/7/2011 2

Algorithms: topics
• Notation/pseudocode
• Design of Algorithms (for simple

problems)
• Analysis of algorithms

– Is it correct?
Loop invariants

– Is it “good”?
Efficiency

– Is there a better algorithm?
Lower bounds

11/7/2011 3

What is an algorithm?
• For this course: detailed pseudocode, or

a detailed set of steps
• Q: Given a problem, can we always

design an algorithm to solve it?

• CSE 3101: Design and Analysis of
Algorithms
– Different design paradigms
– Different analysis techniques
– Intractability results

11/7/2011 4

Problem 1
• Swapping two numbers in memory

tmp = x;
x = y;
y= tmp;

x = x+y;
y = x-y;
y= x-y;

•Can we do it without using tmp ?

•Why does this work?
•Does it always work?

11/7/2011 5

Making change
• Want to make change for ANY amount

using the fewest number of coins
• Simple “greedy” algorithm: keep using

the largest denomination possible
• Works for our coins: 1,5,10, 25,100.
• Does it always work?
• Fails for the following coins: 1,5,7,10

e.g: 14 =10 + 1 +1 +1 +1, 14 = 7 + 7
• Read proof from the text

11/7/2011 6

Problem 2
Q1. How do you find the max of n numbers (stored

in array A?)
Formal specs:
INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that A[j]  m,

1  j  length(A)

Find-max (A)
1. max  A[1] How many comparisons?
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Q2. Can you think of another algorithm? Take a minute….
How many comparisons does it take?

11/7/2011 7

1. I/O specs: Needed for correctness proofs,
performance analysis. e.g. for sorting:
INPUT: A[1..n] - an array of integers
OUTPUT: a permutation B of A such that

B[1]  B[2]  ….  B[n]

2. CORRECTNESS: The algorithm satisfies the
output specs for EVERY valid input.

3. ANALYSIS: Compute the running time, the
space requirements, number of cache misses,
disk accesses, network accesses,….

Reasoning (formally) about algorithms

11/7/2011 8

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that m  A[j], 1  j  length(A)
Find-max (A)
1. max  A[1]
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Proof 1 [by contradiction]: Suppose the algorithm is incorrect.
Then for some input A,
(a) max is not an element of A or (b) (j | max < A[j]).
Max is initialized to and assigned to elements of A – (a) is
impossible. For (b): after the jth iteration of the for-loop
(lines 2 – 4), max  A[j]. From lines 3,4, max only
increases.
Therefore, upon termination, max  A[j], which
contradicts (b).

Prove that for any valid
Input, the output of
Find-max satisfies the
output condition.

Correctness proofs of algorithms

11/7/2011 9

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that m  A[j], 1  j  length(A)
Find-max (A)
1. max  A[1]
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Proof 2[use loop invariants]:
(identify invariant) I(j): At the beginning of iteration j of for

loop, max contains the maximum of A[1..j-1].

(Proof) True for j=2. For j > 2, assume that (j-1) holds. So
at the beginning of iteration j-1, max = maximum of A[1..j-
2].

Prove that for any valid
Input, the output of
Find-max satisfies the
output condition.

Correctness proofs of algorithms -2

11/7/2011 10

Loop invariant proof - contd
Case (a) A[j] is the maximum of A[1..j]. In lines

3,4, max is set to A[j].

Case (b) A[j] is not the maximum of A[1..j], so
the maximum of A[1..j] is in A[1..j-1]. By our
assumption max already has this value and
by lines 3-4 max is unchanged in this
iteration.

You will see more non-trivial examples in CSE 2011, 3101.

11/7/2011 11

Loop invariant proofs
STRATEGY: We proved that the invariant holds at the

beginning of iteration j for each j used by Find-max.

Upon termination, j = length(A)+1. (WHY?)
The invariant holds, and so max contains the
maximum of A[1..n]

-- STRUCTURED PROOF TECHNIQUE
-- VERY SIMILAR TO INDUCTION

Advantages:
Rather than reason about the whole algorithm, reason

about SINGLE iterations of SINGLE loops.

11/7/2011 12

Problem 2
Q1. How do you find the max and min of n

numbers (stored in array A?)

Q2. Can you think of a FASTER algorithm?

