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Classical least squares regression consists of minimizing 
the sum of the squared residuals. Many authors have pro- 
duced more robust versions of this estimator by replacing 
the square by something else, such as the absolute value. 
In this article a different approach is introduced in which 
the sum is replaced by the median of the squared resid- 
uals. The resulting estimator can resist the effect of nearly 
50% of contamination in the data. In the special case of 
simple regression, it corresponds to finding the narrowest 
strip covering half of the observations. Generalizations 
are possible to multivariate location, orthogonal regres- 
sion, and hypothesis testing in linear models. 
KEY WORDS: Least squares method; Outliers; Robust 
regression; Breakdown point. 

1. INTRODUCTION 
The classical linear model is given by yi = xil0 + + xi,O, + ei (i = 1, . . . ,n), where the error ei is usually 

assumed to be normally distributed with mean zero and 
standard deviation a.The aim of multiple regression is 
to estimate 0 = (e l ,  . . . , 0,)' from the data (xi], . . . , 
xi,, yi). The most popular estimate 6 goes back to Gauss 
or Legendre (see Stigler 1981 for a recent historical dis- 
cussion) and corresponds to 

minimize 2 r?, 
i = l  

where the residuals ri equal yi - xi le l  - ... - xipop. 
Legendre called it the method of least squares (LS), and 
it became a cornerstone of statistics. But in spite of its 
mathematical beauty and computational simplicity, this 
estimator is now being criticized more and more for its 
dramatic lack of robustness. Indeed, one single outlier 
can have an arbitrarily large effect on the estimate. In 
this connection Hampel (1971) introduced the notion of 
the breakdown point E*, extending a definition of Hodges 
(1967): E* is the smallest percentage of contaminated data 
that can cause the estimator to take on arbitrarily large 
aberrant values. In the case of least squares, E* = 0. 

A first step toward a more robust regression estimator 
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came from Edgeworth (1887), improving a proposal of 
Boscovich. His least absolute values or L1 criterion is 

minimize C I ri I. 
i = l  

This generalizes the median of a one-dimensional sample 
and, therefore, has to be made unique (Harter 1977). But 
whereas the breakdown point of the sample median is 
50%, it can be shown that L1 regression yields the same 
value E *  = 0 as LS. Although L 1regression protects 
against outlying yi, it cannot cope with grossly aberrant 
values of xi = (xi],. . . ,xi,), which have a large influence 
(called leverage) on the fit. 

The next step in this direction was the M estimator 
(Huber 1973, p. 800), based on the idea of replacing r? 
in (1 . l )  by p(ri), where p is a symmetric function with a 
unique minimum at zero. Unlike (1.1) or (1.2), however, 
this is not invariant with respect to a magnification of the 
error scale. Therefore one often estimates the scale pa- 
rameter simultaneously: 

where IJJ is the derivative of p and x is a symmetric func- 
tion. (Finding the simultaneous solution of this system of 
equations is not trivial, and in practice one uses an it- 
eration scheme based on reweighted least squares or 
Newton-Raphson.) Motivated by minimax asymptotic 
variance arguments, Huber proposed to use the function 

$(u> = min(k, max(u, - k)), 
where k is some constant, usually around 1.5. As a con- 
sequence, such M estimators are statistically more effi- 
cient than L 1  at a central model with Gaussian errors. 
However, again E* = 0 because of the possibility of lev- 
erage points. 

Because of this vulnerability to leverage points, gen- 
eralized M estimators (GM estimators) were introduced, 
with the basic purpose of bounding the influence of out- 
lying xi, making use of some weight function w. Mallows 
(1975) proposed to replace (1.3) by 
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whereas Schweppe (see Hill 1977) suggested using + 1, and the unknown parameter 0 is a p-dimensional 
column vector (01, . . . , 0,)'. The unperturbed linear 

w(xi)+(ril(w(xi)~))xi = 0. (1.6) model states that yi = xiO + ei, where ei is distributed 
i =  1 according to N(0, a). Throughout this section it is as- 

?I 

Making use of influence functions, good choices of + and 
w were made (Hampel 1978; Krasker 1980; Krasker and 
Welsch 1982). It turns out, however, that the GM esti- 
mators now in use have a breakdown point of at most 11 
(p  + I), where p is the dimension of xi (Maronna, Bustos, 
and Yohai 1979; Donoho and Huber 1983). Various other 
estimators have been proposed by Theil (1950), Brown 
and Mood (1951), Sen (1968), Jaeckel (1972), and An- 
drews (1974); but none of them achieves E* = 30% in the 
case of simple regression (p  = 2). 

All of this raises the question whether robust regression 
with a high breakdown point is at all possible. The af- 
firmative answer was given by Siegel (1982), who pro- 
posed the repeated median with a 50% breakdown point. 
Indeed, 50% is the best that can be expected (for larger 
amounts of contamination, it becomes impossible to dis- 
tinguish between the "good" and the "bad" parts of the 
sample). Siegel's estimator is defined as follows: For any 
p observations (xil, y i , ) ,  . . . ,(xip,yip), which determine 
a unique parameter vector, the jth coordinate of this vec- 
tor is denoted by Oj(il, . . . , i,). The repeated median is 
then defined coordinatewise as 

This estimator can be calculated explicitly, but is not 
equivariant for linear transformations of the xi. It was 
applied to a biological problem by Siegel and Benson 
(1982). 

Let us now return to (1.1). A more complete name for 
the LS method would be least sum of squares, but ap- 
parently few people have objected to the deletion of the 
word "sumw-as if the only sensible thing to do with n 
positive numbers would be to add them. Perhaps as a 
consequence of this historical name, most people have 
tried to make this estimator robust by replacing the square 
by something else, not touching the summation sign. Why 
not, however, replace the sum by a median, which is very 
robust? This yields the least median of squares (LMS) 
estimator, given by 

minimize med ri2 e I 

This proposal is essentially based on an idea of Hampel 
(1975, p. 380). In the next section it is shown that the 
LMS satisfies E *  = 50% but has a very low efficiency. 
In Section 4 some variants with higher efficiency are 
given. 

2. PROPERTIES OF THE LEAST MEDIAN 
OF SQUARES METHOD 

We shall now investigate the behavior of the LMS tech- 
nique. The n observations (xi, yi) = (xil, . . . , xi,, yi) 
belong to the linear space of row vectors of dimension p 

sumed that all observations kith xi = 0 have been de- 
leted, because they give no information on 0. (This con- 
dition is automatically satisfied if the model has an 
intercept because then the last coordinate of each xi 
equals 1.) Moreover, it is assumed that in the (p + 1)-
dimensional space of the (xi, yi), there is no vertical hy- 
perplane containing more than [n/2] observations. (Here, 
a vertical hyperplane is a p-dimensional subspace that 
contains (0, . . . ,0) and (0, . . . ,0, 1). The notation [r] 
stands for the largest integer less than or equal to r.) The 
proofs of the following results can be found in the Ap- 
pendix. 

Lemma 1 .  There always exists a solution to (1.8). 

In what follows we shall say the observations are in 
general position when any p of them give a unique de- 
termination of 8. For example, in the case in which p = 
2, this means that any pair of observations (xit, xi2, yi) 
and (xjl, xj2, yj) determines a unique nonvertical plane 
through zero, which implies that (0, 0, 0), (xil7 xi2, yi), 
and (xjl, xj2, yj) cannot be collinear. When the obser- 
vations come from continuous distributions, this event 
has probability one. 

Let us now discuss the breakdown properties of the 
LMS method. Hampel's (1971) original definition of the 
breakdown point was asymptotic in nature. In this article, 
however, I use a version introduced by Donoho and 
Huber (1983) that is intended for finite samples, like the 
precursor ideas of Hodges (1967). Take any sample X of 
n data points (xi, yi) and a regression estimator T. Let 
P(m; T, X) be the supremum of 11 T(X1) - T(X) 1 1  for all 
corrupted samples XI, where any m of the original data 
points are replaced by arbitrary values. Then the break- 
down point of T at X is 

E * ( T ,X) = min{mln; P(m; T, X) is infinite). (2.1) 

In other words, it is the smallest amount of contamination 
that can cause the estimator to take on values arbitrarily 
far from T(X). Note that this definition contains no prob- 
ability distributions! For least squares, E*(T, X) = lln 
because one bad observation can already cause break- 
down. For least median of squares, however, this is no 
longer the case. 

Theorem 1. If p > 1 and the observations are in general 
position, then the breakdown point of the LMS method 
is ([n/2] - p + 2)ln. 

Note that the breakdown point depends only slightly 
on n. To have only a single value, one often considers 
the limit for n + w (with p fixed); so it can be said that 
LS has a breakdown point of 0%, whereas the breakdown 
point of the LMS technique is as high as 50%, the best 
that can be expected. The following corollary gives a spe- 
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cia1 case that shows the large resistance of the LMS 
method. 

' Coro11ar7. If and there some €I such thatat least n - [n/ZI + P - 1 of the observations satisfy Y i  
= xi0 exactly and are in general position, then the LMS 
solution equals 0 whatever the other observations are. 

Remark 1. The breakdown point in Theorem 1 is 
slightly smaller than that of the repeated median, although 
they are both 50% breakdown estimators. I am indebted 
to A. Siege1 (personal communication) for a way to over- 
come this. Instead of taking the median of the ordered 
squared residuals, consider the kth order statistic (r2)k:n, 
where k = [n/2] + [(p + 1)/2], and minimize (r2)k,, . It 
turns out (analogous to the proof of Theorem 1) that this 
variant of the LMS has breakdown point ([(n - p)/2] + 
l)ln, which is exactly the same value as for Siegel's re- 
peated median. In the Appendix, it is shown that this is 
the maximal value for all regression-equivariant esti- 
mators. (By regression equivariance, I mean the property 

T({(xi,yi + xiv); i = 1 , .  . . ,n) )  

= T({(xi, yi); i = 1, . . . , n)) + v 

for any vector v.) For this variant of the LMS, Corollary 
1 holds whenever strictly more than +(n + p - 1) of the 
observations are in an exact fit situation, which also cor- 
responds to the repeated median. 

It is well known that the LS estimator reduces to the 
arithmetic mean in the special case of one-dimensional 
estimation of location, obtained by putting p = 1 and xi 
= 1 for all i. Interestingly, in that special case, the LMS 
estimator also corresponds to something we know. 

Theorem 2. Let p = 1 and all xi = 1, so the sample 
reduces to ( y i ) i = ~ , . . , ~ .  If 

m; : med ri2 = med (yi - T)2 
i i 

equals min med (y - e)2,
El i 

then both T - mT and T + mT are observations in the 
sample. 

Theorem 2 makes it easy to determine Tin the location 
case because one has to determine only the shortest half 
of the sample. (This is done by finding the smallest of the 
values 

yh:n - yl:n, Y h + l : n  - Y2:n, . . . ,Yn:n - Yn-h+l:n, 

where h = [n/2] + 1 and yl:, r y2:,,I... Iy,,:,, are the 
ordered observations.) By Theorem 2 T simply equals the 
midpoint of this shortest interval. (In case there are sev- 
eral shortest halfs, which happens with probability zero 
when the distribution is continuous, one could take the 
average of their midpoints.) This is reminiscent of the 
estimator shorth in the Princeton Monte 
study ( ~ n d r e w s  et al. 1972), where the mean of all of the 
observations in the shortest half is taken. The shorth con- 
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verges like n-'I3 ; therefore its influence function is not 
well defined, but its finite-sample breakdown behavior is 
extremely good (Andrews et al. 1972, pp. 50, 33, 103). 
All of these properties are shared by the LMS (details on its asymptotic behavior can be found in the ~ ~ ~ ~ ~ d i ~ ) .  
The fact that the LMS converges like - 113 does not trou- 
ble me very much, because I consider the LMS mainly 
as a data analytic tool, for which statistical efficiency is 
not the most important criterion. In Section 4 I will con- 
struct variants with higher efficiency. Although the LMS 
has no well-defined influence function, it is possible to 
get some idea of its local robustness properties by con- 
structing stylized sensitivity curves, as was done by An- 
drews et al. (1972, p. 101) for the shorth. For the LMS 
this yields Figure 1 for n = 10; for larger sample sizes 
the upward and downward peaks become thinner and 
higher. 

Theorem 2 can also be used in the more general case 
of regression with a constant, obtained by putting = 
1 for all i. From Theorem 2, it follows that for an LMS 
solution, both hyperplanes y = x6 - mT and y = x6 + 
mT contain at least one observation. 

In the special case of simple regression, there are only 
a single independent variable and a single dependent var- 
iable to be fitted to the model yi = axi + b + ei .  One 
therefore has to find the slope and the intercept of a line 
determined by n points in the plane. By Theorem 2 the 
LMS solution corresponds to finding the narrowest strip 
covering half of the observations. (To be exact the thick- 
ness of the strip is measured in the vertical direction, and 

SENS i T I  V I T Y  CURVE O F  LMS - OWE DIMEN .  
N = 10  

I ~ ~ t 

1 -5 .go 

, , , , , , , , , , , , , 

-2 .00 0 2 .go 
Figure 1. Stylized Sensitivity Curve of the LMS in One Dimension, 

Given by SC(X) = n(Tn(yl, . . . , x) - Tn-l (y l ,  . . . , yn-l)) ,  
Where y i  = @-' (i/n), for n = 10. 
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we want at least h = [n/21 + 1 points on it.) It is easy 
to write a computer program to determine the LMS line, 
because for each value of a ,  the above algorithm for the 
location case can be used to calculate 

ma2 = min med ((yi - axi) - bI2 
b i 

immediately. Therefore, one only has to minimize the 
continuous function ma2 of the single variable a. This 
technique will be used in Section 3. For data analytic 
purposes, D. Hoaglin (personal communication) pro- 
posed to compute not only the global minimum of the 
objective function but also the second best local minimum 
(if it exists), because this might reflect a possfble ambi- 
guity in the data. 

For problems in higher dimensions, another program 
has been developed (Leroy and Rousseeuw 1984), making 
use of brute force minimization of the objective function 
medi r?. Table 1 lists some computation times on the 
CDC computer of the University of Brussels for different 
values of n and p.  (For larger values of n, the time is 
roughly proportional to n for fixed p.) These times are 
large, which is not so surprising in view of the relationship 
of the LMS to the projection pursuit technique (Friedman 
and Tukey 1974). Indeed, consider the (p + 1)-dimen-
sional space of observations (xi, yi). We want to find a 
direction, given by some vector (8, -I) ,  such that the 
projection of the data on the y axis, in the direction or- 
thogonal to (8, - I), possesses the smallest dispersion 
(measured by the median of squares). 

In addition to the regression coefficients e l ,  . . . , 8,, 
the scale parameter a has to be estimated in a robust way. 
Once the LMS solution T has been found, with mT2 : 
mine medi ri2, a natural estimator for a is 

where 1 /V1( .75)  = 1.483 is an asymptotic correction 
factor for the case of normal errors, because then 

med r? + u2med(X12) = ~ ~ ( @ - ' ( . 7 5 ) ) ~ ,  
i 

where @ denotes the standard normal cumulative. The 
constant c(n, p)  is a finite-sample correction factor larger 
than 1, which is necessary to make S approximately un- 
biased when simulating samples with normal errors. 

Table 1. Computation Times* for the LMS Multiple  
Regression Program With Intercept for  

Different n and p  

P 

' In CP seconds on a CDC 750 computer. 
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Work is in progress to determine c(n, p )  empirically. For 
n tending to infinity, c(n, p )  converges to 1. 

3. EXAMPLES 
In the first example, 30 "good" observations were gen- 

erated according to the linear relation yi = axi + b + 
ei, where a = 1, b = 2, xi is uniformly distributed on (1, 
4), and ei is normally distributed with mean zero and stan- 
dard deviation .2. The number p of coefficients to be es- 
timated therefore equals 2. Then a cluster of 20 "bad" 
observations were added, possessing a spherical bivariate 
normal distribution with mean (7, 2) and standard devia- 
tion 4. This yielded 40% of contamination in the pooled 
sample, which is high. This amount was actually chosen 
to demonstrate what happens if one goes above the upper 
bound ll(p + 1) - 33.3% on the breakdown point of the 
GM estimators now in use. 

Let us now see which estimator succeeds best in de- 
scribing the pattern of the majority of the data. The clas- 
sical least squares method yields d = - .47 and d = 5.62: 
it clearly fails because it tries to suit both the good and 
the bad data points. Making use of the ROBETH library 
of subroutines (Marazzi 1980), three robust estimators 
were applied: Huber's M estimator (1.3)-(1.4) with +(x) 
= min(l.5, max( - 1.5, x)), Mallows's GM estimator (1.5) 
with Hampel weights, and Schweppe's GM estimator 
(1.6) with Hampel-Krasker weights (both Mallows's and 
Schweppe's using the same Huber function +). All three 
methods, however, gave results virtually indistinguisha- 
ble from the LS solution: the four lines almost coincide 
in Figure 2. The repeated median estimator (1.7) yields 
d = .30 and d = 3.11. If the cluster of "bad" points is 
moved further down, the repeated median line follows it 
a little more and then stops. Therefore this method does 
not break down. Finally, the LMS (1.8), calculated by 
means of the algorithm for simple regression described 
in Section 2, yields d = .97 and d = 2.09, which comes 
close to the original values of a and b. When the cluster 
of bad points is moved further away, this solution does 
not change. Moreover, the LMS method does not break 
down even when only 26 "good" points and 24 outliers 
are used. 

It may seem unfair to consider such large amounts of 
contamination (although they sometimes occur, e.g., in 
the case of ancient astronomical observations (Huber 
1974) or in certain sloppy medical data sets). The break- 
down point of the currently used GM estimators, how- 
ever, is less than ll(p + l), which is small in problems 
with several independent variables; so very common 
amounts of contamination already necessitate the use of 
a more robust regression estimator. Moreover, it still has 
to be investigated empirically whether the upper bound 
ll(p + 1) on the asymptotic breakdown point can actually 
be reached in finite sample situations. 

Note that looking at the least squares residuals (pos- 
sibly followed by a rejection of outlying ones) is not suf- 
ficient. In fact the least squares fit often masks bad data 
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LEAST MEDIAN OF SQUARES - LEAS[ SOUARFS 
YUBER - MALLOWS - SCHWEPPE - PEP .YEDIAN 

I - ' " " " " " / > , 7-,~7- 1 8 

Figure 2. Regression Lines for the Simulated Data of the First 
Example, Using Six Methods. (LMS = least median of squares; LS 
= least squares; M = Huber's M estimator; GM = Mallows's and 
Schweppe's G-M estimator; REP. MEDIAN = repeated median; 0 
= 30 "good" points generated according to a linear relation y,  = 
xi + 2 + ei  and 20 "bad" points in a spherical cluster around (7, 
2). 

points: in Figure 2, the largest LS residuals correspond 
to good data! In problems with several variables, a very 
robust estimator like the LMS can be used for finding the 
outlying observations, as shall be seen in the next ex- 
ample. 

When faced with a practical application, it seems like 
a good idea to run both an LMS and an LS regression. 
If they agree closely, the LS result can be trusted. If, on 

the other hand, there is a significant difference, then we 
know which observations are responsible by looking at 
the LMS residuals. 

Let us now look at a second example, containing mul- 
tidimensional real data. It seems that an entirely real ex- 
ample with "messy" data might not be completely con- 
vincing, because we would end up with different results 
for LS and LMS without a conclusive way to decide 
which analysis is best, possibly causing some debates. 
Therefore, we start with a real data set that is rather well 
behaved and contaminate it by replacing a few obser- 
vations. It would be easy to illustrate the resistance of 
the LMS by throwing in some very bad outliers, but I 
would like to put the LMS to a harder test by considering 
a more delicate situation. To show that the LMS also 
works in small samples, I selected a data set containing 
20 points with six parameters to be estimated. The raw 
data came from Draper and Smith (1966, p. 227) and were 
used to determine the influence of anatomical factors on 
wood specific gravity, with five independent variables 
and an intercept (Draper and Smith conclude that xi2 
could be deleted from the model, but this matter is not 
considered for the present purpose). Table 2 lists a con- 
taminated version of these data, in which a few obser- 
vations have been replaced by outliers. Applying least 
squares yields 

$ i  = .44069 x i l  - 1.47501 xi2 - ,261 18 xs  

+ .02079 xi4 + .I7082 xa  + .42178. 

Table 2 lists the LS residuals, divided by the LS scale 
estimate bLS= .02412. It is not easy to spot the outliers 
just by looking at the observations, and the LS result 
(without a more detailed analysis) is of little help. Indeed, 
the standardized residuals look very inconspicuous, ex- 

Table 2. Modified Data on Wood Specific Gravity With Standardized Residuals  
From Least Squares and Least Median of Squares  



876 

cept for observation 11 (and this is a false trail). Because 
of this, many people would probably be satisifed with the 
LS fit (especially when not expecting trouble). By means 
of the subroutines that are presently at my disposal, I was 
unable to obtain a GM estimate essentially different from 
the LS one, although it is possible that a more refined 
GM program would do the job. The LMS estimate can 
also be computed, however, as described in Remark 1 of 
Section 2, taking c(20, 6) = 1.8 in (2.2). This yields 

j i  = .26870 xi1 - .23806 xi2 - .53572 xi3 

- .29373 xi4 + .45096 xis + .43474. 
Now look at the LMS residuals divided by the LMS scale 
estimate a01957 which are given in the last column of 
Table 2. These standardized residuals make it easy to spot 
the four outliers. This example illustrates the use of the 
LMS as a data analytic tool: as anext step in the analysis, 
LS could be computed again without these four obser- 
vations. 

4. RELATED APPROACHES 
A disadvantage of the LMS method is its lack of effi- 

ciency because of its n -'I3 convergence. Of course it is 
possible to take an extreme point of view, wanting to stay 
on the safe side, even if it costs a lot. However, it is not 
so difficult to improve the efficiency of the LMS esti- 
mator. One first has to calculate the LMS estimate T and 
the corresponding scale estimate S given by (2.2). With 
these starting values, one can compute a one-step M es-
timator (Bickel 1975). If one uses a redescending $ func-
tion, like the one of the hyperbolic tangent esthator 
(Hampel, Rousseeuw, and Ronchetti 1981) or the bi- 
weight (Beaton and Tukey 1974) 3 the large outliers will 
not enter into the computation. Such a one-step M esti-
mator converges like n ' " a n d  possesses the same asymp- 
totic efficiency (for Immal errors) as a fully iterated M 
estimator. his was proven by Bickel (1975) when the 
starting value was n'" consistent, but in general it even 
holds when the starting value is better than n'" consistent 
(~ icke l ,  ~ersonal  communication, 1983). In particular, 
the combined procedure (LMS + One-step achieves 

(S4~ 'd@)~/ (S$~d@).the asymptotic efficiency e = For log n) operations compared with only O(n) operations for 
instance, the choice c = 4.0 and k = 4.5 in table 2 of the median, hereby blowing up the already large 
Hampel, Rousseeuw, and Ronchetti (1981) already yields putation times in Table 1. Another possibility is to use 
an efficiency of more than 95%. the so-called S estimators defined by 

Another possibility is to use reweighted least squares. 
To each observation (xi, yi), one assigns a weight wi that minimize S (8) , (4.2) 
is a nonincreasing function of I rilS I and that becomes e 

zero starting from, say, 1 rilS 1 equal to three or four. Then where S(8) is a certain type of M estimator of scale on 
one replaces all observations (xi, yi) by (wi1I2xi, wi112yi), the residuals r1(8), . . . ,rn(8). (These estimators are now 
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The main idea of the LMS is to minimize the scatter 
of the residuals. From this point of view, there already 
exist other estimators with a similar objective, using other 
measures of scatter. For instance, LS (1.1) minimizes the 
mean square of the residuals, and L I (1.2) minimizes their 
mean deviation (from zero). Jaeckel's (1972) estimator is 
also defined by minimizing a dispersion measure of the 
residuals. For this purpose, Jaeckel uses linear combi- 
nations of the ordered residuals. Since these estimators 
of scale are translation invariant, it is not possible to es- 
timate a constant term in the regression model. Although 
these scale estimates can be quite robust, their largest 
breakdown point (with regard to both explosion and im- 
plosion of 6 ) is E*  = 25%, which is achieved by the in- 
terquartile range. Therefore, the breakdown point of a 
Jaeckel estimator is at most 25%. A way to improve this 
would be to replace the scale estimator by another one 
having a larger breakdown point. For this reason Hampel 
(1975) suggested using the median absolute deviation, 
which essentially yields the LMS. The LMS, indeed, pos- 
sesses a 50% breakdown point but unfortunately only 
converges like n-'I3. This slow rate of convergence can 
be improved by computing a one-step M estimator after- 
wards, as seen earlier in this section. There is also another 
way to achieve this, by using a different objective func- 
tion. The least trimmed squares (LTS) estimator (Rous- 
seeuw in press) is given by 

h 

minimize C (r2)i,n, (4.1) 
e i = '  

where (r2),:n 5 . . . 5 (r2)n:n are the ordered squared re- 
siduals. 1fh = [n/2] + 1 is chosen, the breakdown point 
of Theorem 1 is obtained, and for h = [n/2] + [(p + I)/ 
21, the result of Remark 1 holds. In general, h may depend 
on some trimming proportion a, for instance by means 
of h = [n(l - + 1. ~h~ LTS converges like - 112 

(Rousseeuw in press), with the same asymptotic effi- 
ciency at the normal distribution as the M estimator de- 
fined by l(x) = for 1 1 5 - '(1 - (a/2)) and +(x) = 

otherwise, which is called the ~~b~~ skipped mean. ~h~ 
main disadvantage of the LTS is that its objective function 
requires sorting of the squared residuals, which takes O(n 

which means that points with large LMS residuals dis- 
appear entirely. On these weighted observations, a stan- 
dard least squares program is used to obtain the final 
estimate. Actually, applying this estimator to the data in 
Section 3 amounts to deleting the 20 "bad" points from 
the first example and deleting the four outliers from the 
second. 

being investigated in collaboration with V. Yohai, follow- 
ing similar suggestions by J. Tukey and R. Martin (per- 
sonal communications).) It appears that S estimators have 
essentially the same asymptotic behavior as regression 
M estimators, but they can also achieve a high breakdown 
point. 

In the case of simple regression, we saw that the LMS 
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method corresponds to finding the narrowest strip cov- 
ering half of the points. Taking the word "narrowest" 
literally amounts to replacing the usual squared residuals 
by the squared distances from the observations to the 
fitted line. This way the LMS can be generalized to or- 
thogonal regression. Another generalization can be made 
to hypothesis testing in linear models, replacing the usual 
sums of squared residuals by their medians (or, better 
still, by the objective function of (4.1) or the square of 
(4.2)). The ratio of two such medians would then be com- 
pared to critical values, possibly obtained by simulation. 

The LMS technique can also be used to estimate the 
location of a spherical multivariate distribution. If the 
sample x l ,  . . . , x, consists of p-dimensional vectors, 
then the LMS estimator T is defined by 

minimize med 1 1  T - xi 112, (4.3)
T i 

which corresponds to finding the center of the smallest 
disk (or ball) covering half of the points. The LTS analog 
would be to minimize the sum of the first h ordered values 
of I I  T - xi 1 1 2 .  Both procedures have a breakdown point 
of 50% and are equiiariant with respect to magnification 
factors, translations, and orthogonal transformations. 

Recently a more difficult problem has received atten- 
tion, namely to construct a high breakdown estimator of 
multivariate location that is equivariant for affine trans- 
formations, which means that T(Axl + b, . . . , Ax, + 
b) = AT(xl, . . . , x,) + b for any vector b and any 
nonsingular matrix A. The first solution to this problem 
was obtained independently by Stahel (1981) and Donoho 
(1982). For each observation xi, one looks for a one-di- 
mensional projection in which xi is most outlying and then 
downweights xi according to this worst result. The Sta- 
hel-Donoho estimator is then defined as the weighted 
mean of the observations, which is affine equivariant and 
possesses a breakdown point of 50%. Making use of the 
same weights, they also compute a covariance estimator. 
We shall now see that it is also possible to generalize the 
LMS to meet the joint objectives of affine equivariance 
and 50% breakdown point: Define T as the center of the 
minimal volume ellipsoid covering at least h observations 
(Rousseeuw in press). The corresponding generalization 
of the LTS, which also yields E* = 50%, takes the mean 
of the h points for which the determinant of the covari- 
ance matrix is minimal. Both the minimal volume ellip- 
soid estimator and the minimal covariance determinant es- 
timator yield robust covariance estimators at the same 
time (for instance, by computing the covariance of the 
selected h observations, multiplied with a correction fac- 
tor to obtain consistency in the case of multivariate nor- 
mality). 

It is possible to use the LMS idea in multivariate lo- 
cation, but one can also extend the Stahel-Donoho es-
timator to regression. For each observation (xi, yi), one 
could define ui as the supremum of 

over all possible vectors 8. Then one could assign a 
weight w(ui) to each point and compute a weighted least 
squares estimator. Unfortunately this technique involves 
an optimization for each data point, so it requires about 
n times the computational cost of the LMS. 

Finally, a word of caution. Some people have objected 
to the notion of the breakdown point, on the ground that 
it is very crude, and have pointed out the possibility of 
constructing high breakdown procedures that are not 
good on other grounds (Oldford 1983). It is indeed true 
that the breakdown point is only one out of several cri- 
teria; so a high breakdown point alone is not a sufficient 
condition for a good method. I consider a good breakdown 
point to be more like a necessary condition: If it is not 
satisfied because the procedure is vulnerable to a certain 
type of contamination (such as leverage points in regres- 
sion), one cannot guarantee that such contamination will 
never occur in practice. 

APPENDIX 
Proof of Lemma 1 

For this proof, we work in the ( p  + 1)-dimensional 
space E of the observations (xi, y i )  The space of the xi 
is the horizontal hyperplane through the origin, which is 
denoted by (y = 0) because they coordinates of all points 
in this plane are zero (in a space E of dimension p + 1, 
a hyperplane is a p-dimensional subspace). There are two 
cases. 

Case A. This is really a special case for which there 
exists a (p  - 1)-dimensional subspace of V of (y = 0) 
containing (at least) [n/2] + 1 of the xi. The observations 
(xi, yi) corresponding to these xi now generate a subspace 
S of E (in the sense of linear algebra), which is at most 
p dimensional. Because it was assumed that E has no 
vertical hyperplane containing [n/2] + 1 observations, it 
follows that S does not contain (0, 1); hence the dimension 
of S is at most p - 1. This means that there exists a 
nonvertical hyperplane H given by some equation y = 
x8, which includes S. For this value of 8, clearly medi r? 
= 0, which is the minimal value. 

Case B. Let us now assume that we are in the general 
situation in which case A does not hold. The rest of the 
proof will be devoted to showing that there exists a ball 
around the origin, which may be very large, to which 
attention can be restricted for finding a minimum of medi 
r?(8). Because medi r?(8) is continuous in 8, this is suf- 
ficient for the existence of a minimum. Put 6 = 4 inf{q 
> 0; there exists a (p - 1)-dimensional subspace V of (y 
= 0) such that VT covers (at least) [n/2] + 1 of the xi). 
Here Vq is the set of all x with distance to V not larger 
than q .  Because we are not in case A, 6 > 0. Also M : 
maxi I yi I. Now attention may be restricted to the ball 
around the origin with radius (.\/Z + 1)M/6. Indeed, for 
anv 8 with 1 1  8 1 1  > (v'? + 1)M/6, it will be shown that 
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so smaller objective functions cannot be found outside 
the ball. A geometrical construction is needed to prove 
this. Such a 0 determines a nonvertical hyperplane H 
given by y = x0. By the dimension theorem of linear 
algebra, the intersection H f l  (y = 0) has dimension p 
- 1. Therefore ( H  f l  (y = 0))' contains at most En121 of 
the xi. For each of the remaining observations (xi, yi), 
we construct the vertical two-dimensional plane through 
(xi, y i) and orthogonal to ( H  fl (y = 0)). (This plane does 
not pass through zero, so to be called vertical, it has to 
go through both (xi, yi) and (xi, yi + I).) We see that 

with I xiO I > 6 I tg(a) 1, where a is the angle (between 
-~ 1 2  formed by H and the horizontal line in Pi.and ~ 1 2 )  
Therefore I a I is the angle between the line orthogonal 
to H and (0, 1); hence 

and finally, I tg(a) I = 1 1  0 1 1 .  Because 1 1  0 1 1  > (fl+ l)Ml 
6, it follows that I xi0 I > 6 1 1  0 1 1  > M r I yi 1, so I ri I > 
(6 11 0 11 - I yi I ). But then r? > ((fl+ l )M - I yi 1 )2 
> 2M2 for at least n - in121 observations, hence medi 
(r?) > M2 medi (Y?). Such 0 outside the yield an 
objective function larger than the one for 0 = 0; hence 
such 0 can be disregarded. 

Proof of Theorem 1 
1. We first show that 

E * ( T ,X) 2 ([n/2] - p + 2)ln 
for any sample X = {(xi, yi); i = 1, . . . , n) consisting 
of n points in general position. By Lemma 1 the sample 
X yields a solution 0 of (1.8). We now have to show that 
the LMS remains bounded when n - (En121 - p + 2) + 
1 points are unchanged. For this purpose construct any 
corrupted sample X'  = {(xir, yi t) ;  i = 1, . . . , n) by 
retaining n - En121 + p - 1 observations of X-which 
will be called the "good" observations-and by replacing 
the others by arbitrary values. It suffices to prove that 
1 1  0 - 0' 11 is bounded, where 0' corresponds to X'. For 
this purpose some geometry is needed. We work in the 
(p  + 1)-dimensional space E of the observations (xi, yi). 
The space of the xi is the horizontal hyperplane through 
the origin, denoted by (y = 0) because the y coordinates 
of all points in this plane are zero. (We call this subspace 
a hyperplane because its dimension is p,  which is one less 
than the dimension of the total space E.) Put p : iinf{q 
> 0; there exists a (p  - 1)-dimensional subspace V of (y 
= 0) such that V" covers at least p of the xi). Here V" 
is the set of all x with distance to V not larger than q. 
Because X is in general positon, it holds that p > 0. Also 
put M : maxi I ri 1, where ri are the residuals yi - xiO. 

The rest of the proof of part 1 will be devoted to show- 
ing that 11 0 - 0' 11 < 2( 11 0 1 1  + Mlp), which is sufficient 
because the right member is a finite constant. Denote by 
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H the nonvertical hyperplane given by the equation y = 
x0, and let H' correspond in the same way to 0'. Without 
loss of generality assume that 0' # 0, hence H' # H. By 
the dimension theorem of linear algebra, the intersection 
H fl H '  has dimension p - 1. If pr(H f l  H ' )  denotes the 
vertical projection of H fl H' on (y = 0), it follows that 
at most p - 1 of the good xi can lie on (pr(H f l  
A is defined as the set of remaining good observations, 
containing at least n - En121 + p - 1 - (p  - 1) = n -
En121 points. Now consider any (x,, y,) belonging to A,  
and put r, = y, - x,O and r,' = y, - x,O'. Construct 
the vertical two-dimensional plane P, through (x,, y ,) 
and orthogonal to pr(H f l  H') .  It follows, as in the proof 
of Lemma 1, that 

where a is the angle formed by H and some horizontal 
line in P, and a '  corresponds in the same way to H'. 
Since 

1 1  0' - 0 1 1 ~ 1 1 = 2 11 0 1 1  + ( 1 1  0'11 -0 1 1  + 1 1  0' 1 1  1 1  0 1 1  
51 11 0' 11 - 1 1  0 1 1  1 + 2 1 1  0 11, 

it follows that I 
- r, 1 > p( 11 - 0 11 - 2 1 1  0 1 1  1. N~~ 

the median of squared residuals of the new sample X' with respect to the old o, with at least - + -
1 of these residuals being the same as before, is less than 
or equal to M2. ~ e c a u s e  0' is a solution of (1.8) for X', 
it also follows that medi (yit - ~ ~ ' 0 ' ) ~M2. If it is now 5  

assumed that 11 0' - 0 1 1  r 2( 1 1  0 11 + Mlp), then for all a 
in A, it holds that 

so I rat 1 2 I r,' - ra 1 - I ra 1 > 2M - M = M, and 
finally, medi (yi' - > M2, a contradiction. There- ~ ~ ' 0 ' ) ~   
fore, 11 0' - 0 1 1  < 2( 1 1  0 11 + Mlp) for any X'.  

2. Let us now show that the breakdown point can be 
no larger than the announced value. For this purpose, 
consider corrupted samples in which only n - [n/2] + p 
- 2 of the good observations are retained. Start by taking 
p - 1 of the good observations, which determine a (p  -
1)-dimensional subspace L of E. Now construct any non- 
vertical hyperplane H' through L, which determines 
some 0' through the equation y = x0'. If all of the "bad" 
observations are put on H', then X' has a total of (En121 
- p + 2) + (p  - 1) = En121 + 1 points that satisfy yi' 
= xi'Ot exactly; so the median squared residual of X'  
with respect to 0' is zero, hence 0' satisfies (1.8) for X'. 
By choosing H' steeper and steeper, one can make 1 1  0' 
- 0 1 1  as large as one wants. 

Proof of Corollary 1 
There exists some 0 such that at least n - [nl2] + p 

- 1 of the observations lie on the hyperplane H given by 
the equation y = x0. Then 0 is a solution of (1 .8), because 
medi r?(O) = 0. Suppose that there is another solution 
0' # 0, corresponding to a hyperplane H' # H and yield- 
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ing residuals ri(O1). As in the proof of Theorem 1, ( H  fl 
H ' )  has dimension - 1 and thus contains at most p -
1 observations. For all remaining observations in H,  it 
holds that r;(8') > 0 and there are at least n - [n/2] of 
them. Therefore medi r;(Ot) > 0, SO 8' cannot be a so- 
lution. 

Remark 1 of Section 2 
Let us now show that any regression equivariant es- 

timator T satisfies 

E*(T, X) 5 ([(n - p)/2] + 1)ln 
at all samples X = {(xi, yi); i = 1, . . . ,n). Suppose that 
the breakdown point is strictly larger than this value. This 
would mean that there exists a finite constant b such that 
T(X1) lies in the ball B(T(X), b) for all samples X' con- 
taining at least m : n - [(n - p)/2] - 1 points of X. Here 
B(T(X), b) is defined as the set of all 8 for which 1 1  T(X) 
- 8 11 5 b. Now construct ap-dimensional column vector 
v # 0 such that x l u  = 0,  . . . , xp- v = 0. Inspection 
shows that 2m - (p - 1) 5 n. Therefore the first 2m -
(p  - 1) points of X can be replaced by 

(xp, yp + ~ p h u ) ,. . . (xm, Yrn + xmhv) 
for any h > 0. For this new sample X', the estimate T(X') 
belongs to B(T(X), 6). But looking at X' in another way 
reveals that T(Xt) can also be written as T(X") + hv, 
where T(XU) is in B(T(X), b), hence T(X') also belongs 
to B(T(X) + hv, b). This is a contradiction, however, 
because the intersection of B(T(X), b) and B(T(X) + Xu, 
b) is empty for large enough values of h. 

Proof of Theorem 2 
Case A. First suppose that n is odd, with n = 2k - 1. 

Then med(ri2) is reached by the kth square. Therefore at 
least one of the points T + mT or T - mT is an obser- 
vation; without loss of generality, suppose that T + mT 
is and T - m~ is not. There is a partition of the ri2 into 
k - 1 squares r m T2, 1 square = mT 2 ,  and k - 1 squares 
5 mT2.Now take the smallest observation yj that is larger 
than T - m (choose one if there are several), and define 

and 
m2 = ($1 (T + m ~ )- yj1 I2 < m ~ ~ s  

Then there is a partition of the (ri')2 = (yi - into k 
- 1 squares z m2 (corresponding to the same points as 
before), k - 2 squares 5 m2 (corresponding to the same 
points as before, except yj), and 2 squares = m2. Finally 
med(ri')2 = m2 < mT2, a contradiction. 

Case B. Suppose that n is even, with n = 2k. If the 
ordered squares are denoted by r(1)2 s ... 5 r(,)2, then 

mT2 = $(r(k)2 + ~ ( k + l ) ~ ) .  
There is a partition of the squared residuals into k - 1 

squares 5 r(kI2, r(k)2 itself, itself, and k - 1 squares 
2 r(k+1)2.If T + mT is an observation and T - mT is 
not (or conversely), we can repeat the reasoning of case 
A. Now suppose that neither T + mT nor T - mT is an 
observation, which implies that r(kI2 < r ( k + ~ ) ~because 
otherwise r(kI2 = m? = ~ ( k + ~ ; .Therefore, at least 
Y(k+ l I2  > 0. 

Case B.1. Assume that r(kI2 = 0. In that case T coin- 
cides with exactly k observations, the nearest other ob- 
servation (call it yd) being at a distance ( r(k+1) 1. Putting 
T' = $(T + yd), however, we find 

med(yi - T'I2 = i((ir(k+1)>2+ ( i r ( k + ~ ) ) ~ )  

a contradiction 
Case B.2. Assume that r(kI2 > 0. Denote by yj some 

observation corresponding to r(,Q2 and by yd some ob- 
servation corresponding to r(k+ If the observations 
leading to r(kI2 and r(k+ are all larger than T or all 
smaller than T, one can again repeat the reasoning of case 
A. Therefore, one may assume without loss of generality 
that yj < T < yd. Putting T' = i (yj  + yd), we find 

because the function g(t) = - t)2 + ( b  - t)' attains 
its unique minimum at = + b). 

Asymptotic Behavior of the LMS Estimator 
Suppose that the observations y l ,  . . . ,y, are iid ac- 

cording to F(y - 8), where F is a symmetric and strongly 
unimodal distribution with density f .  Then the distribu- 
tion of the LMS estimator T, converges weakly as fol- 
lows: 

- 8)) + %(A~/f(F-l( .75))) .  
Here A = ($A2(F-1(.75)))-113,where A = - f 'If cor-
responds to the maximum likelihood scores, and T is the 
random time s for which s2  + Z(s) attains its minimum, 
where Z(s) is a standard Brownian motion. This result is 
obtained by repeating parts 1, 2, and 3 of the heuristic 
reasoning of Andrews et al. (1972, p. 51), putting a = 
.25, which yields the constant A. The remaining part of 
the calculation is slightly adapted, using the same nota- 
tion. If 8 = 0 and t"is the minimizing value of t, then the 
main asymptotic variability of T, is given by 
$(F,-I(($ + t") + .25) + FnW1(( i+ f i  - .25)) 

where n 'I3 t" behaves asymptotically like AT. 
[Received January 1983. Revised January 1984.1 
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