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ABSTRACT

This report provides anview of Clustering using Mixture Models and the Expecta-
tion Maximization method[1] and then extends these concepts to the problem of cluster
ing of unobsergd data where we cluster a set ettorsuy; for i =1..N for which we
only knav the probability distribtion. Thisproblem has seral applications in Com-
puter Vision where we want to cluster noisy data.
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1. Clustering

Data clustering is an important statistical technique, closely related to unsupervised
learning. Clustering is the process of grouping the samples into clusters, so that samples
with similar properties belong to the same clustecluster is just a set whose members
are similar ot are different from the members of other clusters. For example, samples in
a particular space where the distances betweersamples in a cluster is less than mini-
mal.

One of the most popular clustering techniques is based on Expectation Maximiza-
tion (EM). EM is a method for estimating parameters using partially observed data[2, 3].
Since the clustering problem would bevital if we already kne the membership of
evay sample to a particular clusteve treat this membership information as the unob-
sened part of the data and apply EM. In this report weelde a clustering method that
treats not only the membership of the data as unobserved but the data as well.

Edge grouping is a potential application for clusterifglges can be considered as
the sets of manedgels (edge elements) and these edgels can be detected in an image
using awy of the standard edge detection techniques.

If we happen to kne that our edgels belong to straight lines and wee e esti-
mate of the slope of the lines then we can group the edgels into straight line edges using a
clustering technique. One of the problems is that some of the information i€myot v
accurate and we can only assume that wevkihe probability distribtion of the data,
but not the data itself. So we essentiallwdgnartially observed data.

2. Mixture Mode€

The underlying model of EM clustering is the Mixture Model[4This model
assumes that each sample comes from a clwstevherej =1,..., K. The way to gener
ate samples form the mixture model is as felo\We slect one of the clusters; with
probability P(w;) = 77; and then generate a sampleout of a probability distribtion

O O

P(X|wj, 6) or p(x|8;) whered = [}, | =1,...,Kpandg; is the vector of parameters asso-
O O

ciated with the clusten;, which in our case contains the mean the covariance matrix

C; and the mixture probabilityr;. One should notice thai(x|¢;) and p(x|w;, 6) are the
same. Thdirst one denotes the probability density>ofiven the parameters; of the
clusterw; and the other denotes the probability density given the parameters of all

the clusters and the fact that wevtaelected clustew;. The densityp(x|6;) is called
component densityThe probability density function of a sample x from the mixture
model is then

K
p(xe) = gl p(X|e;, ) ;. (2.1)

For the mixture probabilities;, the following is true
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3. Maximum-Likelihood Estimation

The Maximum-Likelihood (ML) method can be used for parameter estimation from
a ®t of samples¢;,i =1..N. We assume thap(x|6;) is of known parametric form with
parameter @ctorsg; which are unknown. The mixture probabilitiesare also unknan.
The maximum-likelihood estimate of the parametérsrelated to a set of data
D =x;,i=1,..,N is obtained by maximizing the log likelihood of the parameters. The
likelihood of the parameters is the probability of the datangthe parameters

L(6) = p(DI6) = ﬁ p(x6)

assuming the data is independent. By substituting the probability density function Eq.
(2.1), we get

N K
p(Dlo) = r! Zl P(Xi|wj, 6) ;.
i=l j=
The reason to takthe log-likelihood of the parameters is th#D|6) invdves a product
of N terms. © amplify the calculation, we use log-gkhood to change products to
sums. V& will use the Gaussian distribution[5] as our parametric formpfog|é;). For
multidimensional data it takes the form

1 -
———e
Ve
wherem is the number of dimensions oéator x, C; is the ceariance matrix and; is

the mean for the clustes;. The mixture probabilities, the eariance and the mean are

O O
bundled in the parameter vect®y = [, C;, 7,0

(x=))"C; H(xp5)

p(x[e;) = (3.1)

Im most applications of ML the restep is to maximize the likelihood function (or
more often the log-li&lihood). Usuallythe result is a simple analytic expression which
along with a host of other nice propertieplains the popularity of ML. But in this case
we have a poduct of sums and it is impossible to get a simple expression.

The problem would become very simple if we wrtbe membership ofvery sam-
ple. Then we would only va © solve the Gaussian parameter estimation problem for
evay cluster But lacking this membership information we can use Expectation Maxi-
mization.

4. Expectation Maximization Applied to Clustering

Expectation Maximization (EM) is an itenadi dgorithm that alternates between
two deps: the Expectation step and the Maximization steghe Expectation step, we



Lu Ye, Minas E. Spetsakis Clustering of Unobserved Data

first derve the log-likelihood of the unknown parameters as a function of the unebserv
data and then we compute the expectdderof this likelihood using the probability den-
sity of the unobserved data. Since the density of the unobservedvidhtasrthe parame-
ters we want to estimate we use a guess. In the Maximization step, we obtain the parame-
ters that maximize the expected value of thelillood. This ne parameter will become
the guess to be used in thexnigeration. This iteration goes on until a@gence or satis-
faction of the termination conditions. The unknown paramegetord contains informa-
tion appropriate for the mixture model we use. Since we will use the Gaussiarudistrib
tion over the mixture model, normally the parametector contains three components
which are the mean and the variance for each cluster and the mixture probHEieisy

are usually the unknowns of our problem. After wewkiioe mean, variance and the mix-
ture probabilities of each clusteve ae able to group samples. The number of clusters

is known, lut we can augment the algorithm with BIC or AIC (see below) awd Kaas
unknown too.

The straight application of ML to our clustering problem is extremelijcdif
because it wolves logarithms of sums and nyacomplicated functions. Luckilyit can
be easily put in a form where we can apply EMe W¢ this as follavs[6]. Letz be a
vector of lengthK (the number of clusters) and thi¥® element of the ector is 1, if the
samplex; was generated by clustgrand zero otherwise. Obviously there is exactly one
“1” in the vector and the rest are zero so

K
2z =1 (4.1)
=

wherez; is the j element ofz.. Since we do not kne the membership ofvery sample,

z is the unobserved part of the data. Dgt=y;,i =1,..,N be the complete data set
wherey; :{(xi,zi)}, D, =x,i=1,..,N is obsered data set an®, =z,i =1,---,N

be the unobserved data set.

In the expectation step, the expression for expectation is
Q(6,8" = Ep { In p(DJ6)|D,. 6'}.

Although it looks intimidating at first, it can be tamed in\& sample steps. The first step

is to derve the form of Inp(D,|6) which is a function oD,, D, andég. Once we simplify

the Inp(D,|6), we can get its)g@ected value by applying the standard rules. The subscript
D, in Ep, means that the random variables are the elemerids ahd the probability of

D, is conditioned orD, and#', whereé' is just a guess,ub it is usually the result of the

t" (or previous) iteration. The result is a functiordpthe unknown mixture parameters,

6' the guess fod and the observed dal,, but for simplicity we dropD, from Q(6, 6).

Using the rule of joint probabilities and assuming thatyise the elements db,,
are independent, we can rewrfigD,|6) as Dllows:

N
P(Dy18) =1 p(yil6)
i=1

Since we hee y, = {(xi, zi)} , p(yi|6) can be written as
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p(yil6) = p(x, zl6)
Based on the properties of conditional probabitity;, z|6) has the following probability
density expression.

P(x;, zl6) = p(xilz, 8) p(z|6)

As we mentioned alve, z is the \ector whosej" element is 1 if the sampbe was gen-
erated by the cluster. Therefore, the probability of, given the parametereactor g, is
equal to the mixture probability;, i,e. the probability to select clusteamong the clus-
ters of the mixture model.

The probability ofx; given z and#é, p(x;|z, 6) has an alternate form which isp(x;|8;),
whereg; is the vector whose parameters associated with the cluist8o we lave
p(xi, z16) = p(xil&;) ;.
Thus p(y;|6) can be written as
P(Yil6) = p(xil;) (4.2)

This equation only presents the correspondenga(gfo) to the parameter vector of the
jm clusterg;. Recalling thatz; vector, z; =1 and z, =0 for k # j, we havethe following
new expression forp(y;|6):

o(yl6) = [1(p(xla) )
k=1

The term(p(xi|6x) )%« is equal top(x;|¢;)77; whenz; =1, and it is 1 wheik # j. Thus,
the product terms of all K clusters is the same as Eq. (By}ollecting all the samples
yi in Dy the probability density function of tHe, set gven 6 is:

N K
p(Dy18) =1 [1(p(xil6w) 1) *
i=1 k=1

Then we should obtain Ip(Dy|6) by smply taking the logarithm on the aw®equation:

In p(Dy6) = %1 k§1 2, IN(p(x18) 5

and by applying the logarithm rule once more

N K N K
In p(Dyl6) = 2 2 zi IN(P(Xil6)) + 2 2 Zik In(7%) (4.3)

i=1 k=1 i=1 k=1
Eq. (4.3) is our form for Ip(D,|6) and we can ne calculate the expected value of it to
conclude the Expectation Step. Since the form gf(,|6) is the sum of tw terms, the
expected value should be the sum of the expected values of thodertas. V¢ dso
need to keep in mind that the randoariables are the unobserved dajaonly. The
other terms of the equation should be treated as the constants in this situation. The
expected values of constants are themselves.
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E{ In p(D,16)|D, '} = Z Z E{ 2Dy 6} In(p(x16,) +

55 E{ 2Dy 6} In()

i=1 k=1

(4.4)

Let’s renameE { Zk|Dy, 0‘} asz,, then we hae

E{ In p(D,I6)|D,, 6'} = z z Zy IN(p(xl6K)) + z z 2 In(75) (4.5)

Based on the definition of thg, vector, we rotice thatz, takes two values only: zero
and one. So

Zy = Ez{ Zy|Dy, Qt} = 0[P(zy =0|Dy, 8") +1[P(zx =1|Dy, 8") = P(zy =1|D,, 8")

is the probability ofz, to be 1. This is the same &w,|x;, D,, 8") the probability the
samplex; to be generated by tHé" cluster among all the clusters. Applying the Bayes
rule, we hae z, responding to the whole model:

_ P(Xi|Dy, 8", W) P(w|Dy, 8")
Z = Eo{ 4Dy 8'} = Pendx;, 6 = TR M =

ng P(Xi|Dy, 8", ;) P(w;|Dy, 6')

(4.6)

p(x;|6", w)P(awxlDy, 8Y) _  p(xi|6k")P(wilDy, 8")

K K
% P(xi|6, w;)P(w;|Dy, 6Y) Zl P(xi|6;")P(w;|Dy, 6')
= j=

Since we use a known parametric form for the probap@ijussian in this case, we can
computep(x;|6') and so computeg; from Eq. (4.6) and the we can plug treue ofz,
into EqQ. (4.4), to get the final result of the Expectation Step.

In the Maximization Step, we are supposed to maximize theeadpectation func-
tion values in order to get the optimal solution for the umkmé& which can be used in
the next round ag' to estimate a e expectation function and from this to get thewne
6. There is one constraint in our mixture model, which is

% m =1, (4.7)
i=1

Therefore, we maximize the expectation funct@(®, 6') subject to this constraint. &
define a ne Q'(6, ") which takes into account the constraint of Eq. (4.7) by using the
Lagrange multiplier.

K
Q(6,6" = Zl Z Zi In(p(xil6x)) + Z:L Z Zy In(rm)) + A - Zl 7))
i) 59 =
Using standard calculus procedures, we can find the maxiralua of a function subject
to the constraint by taking deatives over the unknowns of the function amgd set the
derwvatives to z2ro, and sole the resulting equations to find the value of the unkrso
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and/ that maximize the function. In the our case the unknovéitie vector containing
all the parameters of the mixture moae] 1/; andC; for j =1..K.

First, we tak the partial dewiative with respect taz;. In Q'(6, 6"), only the last tw
terms ivolve the \ariable 7; so the first term will gie zro. Since we onIy tak
dervatives of the wholeQ' term with respect to one particulay term, only thej™ ele-
ment of the whol&)' term will have ron zero value. So we can get rid of the summation
ove j =1,---,K, and we hae

0Q _N_ 1

alTj i=1 lTj

(4.8)

If we take the summation frorh to K on both sides we can use Eq. (4.7) to elimingte
and hae

from which we get

So we plug thel into Eg. (4.8), and get

N =
2 Zk
_ i
Ti=%N
2 2 Zk
k=1i=1
We rotice that the denominator in the abapression is
K N B N K ~ N
222k=22%=21=N
j=1i=1 i=1j=1 i=1

after taking into account Eq. (4.1). So finally
1N
ITJ = N Z Zik. (49)
i=1

Second, we takthe partial deviative with respect to the unkmm y;, the mean of
the j™ cluster It is only involved in the Gaussian distribution for our mixture model, so

we only need to be concerned with the first term of the expectation function when taking

derivatives. In the first term of the functiog, uses the parametefswhich is the guess
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and we consider it independent frahmand constant. By the same reason avahee
eliminate one summation from=1, ..., K by taking dewative with respect to the partic-
ular u;. The definition of the Gaussian density from Eq. (3.1) is

p(Xlf)) = = =——¢€ 2
VEZm)mC|
and the log is
In 1 06 = w)TC X — )
YERT| 2
The dervative then is as follows:
Q _ 0 Ch 2.1 1 _gzk (Xi_,uj)TCj_l(Xi_,uj)g_o
= : i _
0K Opifa T VATl = 2 0
X — . TC._l Xi — 14
The demvative d the first term equals to zero. The ddlive d (% = ) 21 (X = w3

with respect tqu; is Cj‘l(xi - uj). The denative d the second part is

Q N N .
FY ZZikCJ‘ (X = uj) =C;j _zzik(xi -uj) =0
ﬂj 1=1 i=1
which results to
N ~ N
2 ZkXi = 2 ZikHj
i=1 i=1
or
N p—
ZZIkXI
— i=1
Hi ==y
2 Zk

and using Eq. (4.9) we get

1 N
Hj N7Tj gl ik Xj

It's ime to dene the last unknownariableC; of our model in the Maximization
step. The steps of deation are similar to the destion of x;. We anly work with the
first term of expectation function. The difference begins with the following step:

0Q o N - In —%2 (Xi_,uj)TCj_l(Xi_:uj)g_
T~ T A~ ik IN —————— ik =
oC; 0Cj fm YT = 2 0

The abee dfferentiation ivolves denatives of a ceterminant and a quadratic product

0
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which we can get from the Matrix Reference Manual
(http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/index.html):

0 _ _ _

E(Xi = u)"C X = ;) ==C 7% — )% — ) TC;
i

0 _

Elcjlzlcjlcj '

and using the chain rule

0 1 0 g1 1 _
I = —1In i
oC; nv(zﬁ)m]c | oC; 02 e I P
and we get
OQ 1N - D
aC _5 glz S: 1+C 1(X| :uj)(xl :Uj)T =0

After that, we multiplyC; twice on both sides of ake ejuation to eliminaté:j‘l, and
we get the following:

_%zik(—cj +(%; = )% = 1j)") =0

N N
_leiij = leik(xi = )% = )"
i= =

which gives

% Zy (Xi = pj)(X%i = ﬂj)T
Cj - i=1

N .

_Z Zik

i=1

By using Eqg. (4.9), we va theC; for the next iteration.

i = N_ Z Zy (X — ,Uj)(Xi - ,Uj)T
J i=1
In conclusion, the alwe cerivation explains the internal detail steps of EM algo-
rithm. When we run the EM algorithm each time, we can directly use the obtained equa-
tions to calculate the gariance, means and mixture parameters.

K-means clustering is a simple and classigahneple by applying EM algorithmlt
can be viewed as the problem of estimating the means of K Gaussians Mixture Model.
The special assumption of K-means is that the mixing probabitifiese equal and each
Gaussian distribution has the same variance.
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5. Bayesian Information Criterion Applied to Clustering

The EM clustering algorithm that we outlined abassumes a Mixture of Gaus-
sians as the underlying model. After the particular mixture model is defined, the EM
algorithm is be applied to find all the parameters except the number of clusters. So we
have b provide the number of clusters through some other method. The Bayesian Infor
mation Criterion (BIC) is a widely used method for this purpose[7, 8], and can be applied
in our case to find the number of clusters.

Since we use EM to find the maximum mixtureslikood after each iteration, we
can get reliable approximation of BIC. The expression of BIC is

BIC = -2L (%, 8) + mylog(N) (5.1)

whereL y (X, 6) is the maximized mixture loglikelihood for the modél, my, is the num-
ber of independent parameters to be estimated in the modé&l enthe number of sam-
ples. The maximized mixture loglikelihood function is

N N K
Lm(x,8) =log[] p(xi|6) =log[1 2 p(xi6;)7;
i=1 i=1 j=1
Recalling the material discussed in thevias sectionsp(x;|8;) is the probability ofx;
given that it belongs to thg™" cluster which is a Gaussian distribution angl is the the
mixture probability of the modeM. The smaller the value of BIC, the stronger thie e
dence for the model.

The BIC can be used not only to determine the number of clusters by comparing
models, but also helpvaid local minima in our clustering problensince we use ran-
dom starting points, usually by selecting random initialugs for parameters;,
0; = (u;,Cj, m) wherej =1,---, K, we get distinct clustering results when we run the EM
algorithm sgeral times. If it is our lucky day, we get reasonably good initial values for
;, and we get desirable results in the first attemptvé¥er, we can't control our luck.
To solve this problem, we apply the EM clustering on the same datmatdimes using
random starting points and calculate the BIC to examine the maximum likelihood for
each complete run by applying Eq. (5.1). Then we select the run that has minimum BIC.

6. Expectation Maximization Clustering Applied on Unobserved Data

In the previous sections, we discussed the EM method and the clustering problem
and applied the EM algorithm on the clustering dfsamples intoK clusters. V&
assumed that the underlying model is a Mixture of Gaussians and the coordinates of the
samples are gen. Next we study the problem where the coordinates of samples are not
given drectly and we only kno the probability distributions of the samplegu;|D;),
whereu; are the samples arid; is the data where these probabilities are based on. The
union of allD; is D. We will again use EM to cluster these samples. The general proce-
dure of EM algorithm remain the same but weehdfferent assumptions and precondi-
tions.

As before, we hae oth a set of observed data and a set of unobserved datae W
given the informationD, and we hae N unobsered sampless, i =1,..., N. As before

10
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w; is the membership vector of that sample wheng;as1 if sampleu; was generated by
clusterw; and is equal to zero otherwise. The complete the ylatar each sample is
yi = (Di, ¢, u). The complete data set 3, =(y;,i =1,..,N) wherey, =(D;,¢;, u;) .
The unobserved data 3, =(z,i =1,..., N) wherez =(¢;, y;). Since we assume Mix-
ture of Gaussians, we V& o compute the parameterestor 8 =(6;, j =1..K) where
0; = (u;,Cj, m;) is the mean, variance and mixture probabilities of each cluster.

6.1. Expectation

The first step in EM is to dee the expression forxpectation. In this problend) is
the only gven data, D, is the complete data arg, is the unobserved data. The general
expression for the expectation for this problem is

Q6,6 = Ep { In p(D,6)|D, 6'}

but now Dy andD, contain different data sets and we need tovdénip(D,|6) under dif-
ferent assumptions. As before, we write ti{®,|6) as:

N
p(Dyl6) = q p(Yile) (6.1)
1=
Sincey; = (Dy, ¢;, U;), we can write
P(Yil6) = p(Di, ¢, Uil6)
and we rewritep(D;, ¢;, u;|0) as
P(Di, i, uilo) = p(wi, uil6) p(Dilé, i, uy)
and p(;, u;l0) as
P, Uil6) = p(wil6) p(uile, ¢;).
o)
P(Yil6) = p(wil6) p(uil6, ) p(Dil6, &i, uy)
We row introduce the “quazi-dependence” assumption Ehédr its components) are not

directly related tog (or its components) ut only through the corresponding So
p(D;il6, w;, u;) = p(D;|u;). So thep(y;|6) becomes

P(Yil®) = p(wil6) p(uil6, ¢;) p(Dilu;) (6.2)

The first term in Eq. (6.2) ip(yi|6) and ¢; is the membership vector for th® sample.
Then

[ if u; generatedy w;

[ otherwise
and
K
j=1

and we can write

11
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K
p(wile) = I
k=1

The value of the abe expression isz; if the i"" sample is the member ¢f" cluster or
wij =1. We aan apply the same techniqueg(;|6, ¢;) and have

K
p(uile, w) = I p(uilei)*«.
k=L
Then the Eq. (6.2) can be rewritten as
p(3i6) = 1 7 (11T Pluleg® PDI)
-1 (D
By taking the log ofp(y;|6) we get:
K K
log p(yil6) = kZ_lwik log 77 + kZ_lwik log p(u;|6y) +log p(D;lu;) (6.4)

and from Eq. (6.1)

N
log p(D,|6) = Izl log p(yi|6)

We substitute Eq. (6.4) into the ab® equation, we get the function of Iqg{D[6)

=1 k= i=1 k=

N K N K N
log p(D,|6) = X k;l Wi log m + 3 kzlwik log p(u;|6y) + _leog P(Dilu;) (6.5)
1=

The final step to dareé the expectation function is to &lkxpected value of Eq. (6.5) with
respect to the unobserved d&tagiven the dataD and a guess of the clustering parame-
ters@'. The expectation equation is:

N K
Eo{ log p(D,8)|D, 6'} = > % E{ yul6', D} log 7 +
K
> E{ v log p(ulg)|é", D} + (6.6)

0
E{ log p(Dilu)lé", D}
where we assume that all th&pected values are takerveo D,. We first derve
E{ wil6", D} , which we namey.
Dy = E{ ¢’ik|9t, D} = 0[P(yy =0J¢", D) +1[P(yy =16", D)
sincey; takes only the values 0 and 1. So
@™ = P(yy =1j6", D)

Since we need explicit dependenceupwe write

12
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P(yy =1J6',D) =
Ip(lﬂik =1,u6", D)du, =
I p(ul6', D)P(ywy =116", D, u;)du

By invoking again the quazi-dependence assumption we noticeg;thdaesnt depend on
D, sinceu; is given, so we droD. We dso notice thap(u;|6', D) = p(u;|6', D).

I p(uil6', D))P(wi =116", u;)du :I p(ul6', Di)P(wyl6", up)dy; =
I p(Dil6", u)) p(uil6") p(u;l6y")P(wyl6")

p(Dile") p(uile") i
SCTAANLCIELAN
| Y '

In p(Di|6", u;), 6" has no direct relationship with; but only throughu;, so we hvake the
quazi-dependence assumption and dfbgo p(D;|6', u;) = p(D;i|u;) which is the lileli-
hood ofu; given the dataD and is assumed knm. Sincer' and p(D;|6") don’t contain
theu; variable, we hae

P(Dilu) p(uiléi) "
I p(DileY) |
! t t
p(D—IHt).[ pP(Dile", u) p(uil6x ) du
|
Then we get

t
i = ﬁ [ P(Dilu) (w6 Yoy =
t

i [ P(Di1u) pul6i)ay =
I p(D;, ujlet)du;

ﬂkt

I P(D;|u;) p(uil6Y) du;

(6.7)

I p(Dilu;) p(ui|6")du =

t
7T,
— p(Dilu) p(uilai)du
I P(Dilu;) __1771t p(ui|6;")duy
J_

and if we exchange the summation and the integral we get

13
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lTkt

K
ZI P(Diu;) 77t p(u;|6; ") duy
j=l

I p(Diu;) p(uiloi)du, =

! I p(Dilu;) p(ui|6") du

3 7t [ P p(uie ey
j=l

We define gy,
gk = P(Dil6") :I p(Dilu;) p(u;lé)du, =
and we rewrite the expression@f as
t
7T A
B = X k ik
2 'y
=1

(6.8)

We @an computeay;, by evaluating the intgral using one of the methods described later
and we can the compugg, . The first term of Eq. (6.6) can be written as follows

K X K
2 E{ wile", D} log 75 = 2 @y log 7z (6.9)
k=1 k=1

We row amplify the second term of Eq.(6.6).

K
gl EDZ{ @y log p(Ui|9k)|9t’ D} =

K
0+> E.{ log p(ule)|D. 8!, i =1} P(wy =1ID, 6"

The seconddctorP(yy =1|D, 8') is the same as thg, that we hae cerived. We wse the
result of Eq. (6.7) direct)yand hare

Eui{ log p(Ui|9k)|D, 6", ik :1} Dy = Eui{ log D(Ui|9k)|D, 9kt} Gy =
Dik I log p(ui|6k) p(ui|D;, 6¢")du

All the 6' parameters are\gin and only logp(u;|6,) containsy, andC, which will be
estimated in the Maximization step.

Since the third term of Eq. (6.6) doetscontain ay variables that need to be esti-
mated in the maximization step, it is irnedat and we can ignore it.

6.2. Maximization
In the Maximization step, we use the same method to get the optimal solution for
K
parameters i®; = { 4, Cj, rrj}. We dso need to use the constrajatzz; =1. | use the

j=L
defined symbols to substitute some compkrms in Expectation step. By using the

14
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Lagrange multiplierwe get the maximization function.

Q(6.6 =
% @, log +z¢/ log p(ui|6,) p(u|D:, 8 du +A§ 0 (6.10)
== ik 109 7 |kJ- gp k)P in Yk ID k—1 kD

We want to tale partial dervatives over Q'(6, 6') with respect to the components of
31 = {,UJ,CJ, ITJ} andA.

First, we tak the partial dewiative with respect tor;. Only the first term and the
lagrange term contain thewable 77; in the Eq. (6.10), so the other terms widnsh.

Since the integral operator and partial d&ive ae the linear operators, we can inter
change them

and after solving forr;

=Y B (6.11)

Aia
Using the constraint of the mixture probabilities (by taking thevdere with respect to
A)

K
2 m =1
k=

we get

™Mz

1 K
Y @
/]kzzl ik

'u‘

K N

=2 2 P

k=li=1
So we plug the expression dfinto the Eq. (6.11) and get
N

Z ik

7 = (6.12)

Z Z[Zl|k

k=li=1

Next we tale the partial dewiatives with respect tqu; and set it td to get the opti-
mal value ofu; which only appears in the log-Gaussian [igg;|6,). The other terms will
vanish.

15
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933 9 [100 PIBIBID,, el

0Q’ — i=1 k=1 -0 (613)
ou; 0 Uy
The distribution ofp(u;|6x) is a Gaussian with probability density function
1 G ()
p(u;l6y) = ——— e
V(Zm)MCyl
and
P T - . —
log p(u;|6,) = log 1_ (U= ) G (Ui - )
VEZm)MCyl 2
Then we plug the expression of Ipg;|6,) into the Eq. (6.13) and we get
S 5 i U (U = 1) "C U = ) O
aQ': Elgl‘p I gDV(Zﬁ)_”—quJ 2 [P( || i k) i o
oK, 0k

After changing the order of the summation, the integral and theatilegj and ignoring
the term that vanishes we get
0Q NK 100 (U — ) C TNy, - iIDi, 6,
&zzzlpikj_g(ul /Jk) k (ul ,uk)p(u,| i k)gjuizo
Ouj  iEka 2 ou;
(Ui = )" C MU — 241
2

As mentioned in the last problem, the daiive o

with respect
to u is C (u; — ). Thus we get

% =3 by (€1 - 1) PUIDL By =
a’uj = |k_[ J i j i Yk i

N N
zllffik_[ p(u|D;, 6)C; Huydy — %Wikj p(u|D;, 6" )C; ™ dy; = 0.
1= 1=

Sinceu; can be mued out of the integral and sindg; s not singular and can be elimi-
nated, we get

N N
_z‘pikj p(ui|D;, B uidy; = ,le/ik_[ p(ui|D;, 6 du
i=1 i=1

and

N
2 P I p(ui|Dy, 6 )u; du
i=1

j

N
2 P
i=1

sinceJ’ p(u;|D;, 6 )du =1. Furthermorewe can write

16
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p(Dilu;, Bx") p(uiloy")
p(Dil6")

and from the quazi-dependence assumption, we péDj|u;, 6,") = p(DiJu;). Thuswe
rewrite abee epression as

p(ui|D;, 6¢Y) =

5Pk oDu) pulodu du
_ & (D6 ooie '

_lefik
i=1
Recall that we denoted p(Dil6') a gy, and similarly we denote

Oik :I p(Dilu;) p(uil6u; du;. Then we get

Ok
_Z ik
i=1

N
zwlk glk
Hip=—(

Finally, we reed to dexie te last unknown parametdZ;. As before, only
log p(u;|8x) containsC;. We dart the dewiation from the following:

Q _
aC;

5 5 g [ PUID; 6 log -~ d

, u|D;, 6. log————— du
; & k:1‘7/|kJ' PY;|Di, Gk gv(z_ﬂ.).mlckl ] )
ac
A Tm 4 t
1 2 2 P I(Ui = ) C (U = 1) p(U| Dy, 6 ) du
- a i=1 k=1 — O
2 oC;
which is
Q _
aC;
N K t

1 2 2 @0 I('Og C«l) p(ui| D, 6 ) du,
_ T ikl _

2 oC;

AR T 1 t
1 Zlkzllpikaj(ui — u)’ C (U — ) p(Ui| Dy, 6, ) dy,

i=1 k= —
2 oC; =0

Since

17
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dlogCyl _
“IC] |Ck|
and the deviative d a determinant is
0|Cyl 4
C.|C
ac, = ICKCx

the dervative d the logarithm of the determinant is

0log Cy]

=C >~
aC, K

The differentiation of a quadratic product is

o(u; — 1) C My §
( i :uk)aCkk ( i ,Uk) Ck l(u| ,Uk)(ui _ /jk)TCk 1

We combine the abee wo equations and get

0 1N )
ag ZlﬁukJ'C 1p(u|D,,9k )dy; +

5 lepikj- p(ui|D;, 6)C; 7w = j)(u; = ;)T C; My, =0
1=
After left and right multiplying byC; both sides and omitting non-zero constants, we get

N
2 @i C; _f p(ui|D;, 6")du —
i=1

N
_leikj- p(w|D;, 8 = )i = )T dy =0
i=

and get finally

N
ZwikJ’ p(W|D;, 8 = )(Ui = )T du
Cj - i=1

N
2 Pk I p(ui|D;, 6" dy;
i=1

The integral in the denominator is equal to one so we get

N P(Dilu;) p(uilEi)(u; = a)(u; = ;)"
_ Ellffik_[ p(Dil6,") o
Cj = N
Elé?/ik

As before, we denotg :I p(D;i|u) p(ui|6h)(u; - MU — ,uj)Tdui. Then we hae

18
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N W
2 i glk
Cj — i=1 ik

N
2 P
i=1

6.3. Computing gy, gik and dix

All the computations described aloae simple summations andesages of the
Oi’S, Oi’s and gi’'s. The only non trivial computation wolves g, g and gj them-
selves. The reason is thatyrmntain integration.

The actual method used to compute them will depend on the form in p{iigju;)
is given. If we are gien samples on a regular grid (which can becednt for lov dimen-
sionality u;) we can computep(u;|6, ') on the same grid and the integral becomes a dis-
crete summation. Let'y; be the discrete sampleswgffor m=1..M. We an write then

M
p(Dilu;) = mZ=1 p(Di| "u)SaA Mu; - u;) =

so the integral

Ok = I p(Dilu;) p(uiley")du, =
M
J’nél p(Di| ™u) Sa Mu; — u;) p(uilek")du; =
M
nél p(Di| "u;) I Sa "u; — up) p(uilei)du

is transformed into a sum ofveeal definite intgrals that can be computed analytically
If we approximate the sampling function with the zero mean Gaussian avitmeeCg
the integral becomes much simpler

M
Oik = Zl p(Dilmui)I N(™u; = u; 0,Cg) p(u;|6)du; =
m= f

% D(Di|mUi)I N(™u; = u; 0, CIN(u;; pi', C)dy, =

m=1

M m m t t

2 POl Mu)N("ui; i, Cy +Cy)

m=1
whereC, is a matrix chosen so that the Gaussian approximates the sampling function. A
diagonal matrix with wery member of the diagonal equal to 0.4 is adequate for our pur

poses if the samples are on gee values ofy;. A similar procedure can be followed to
compute the othey’s

19
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M
Ok = Z_l p(Di] "u) N(Mu;; it Ct + Co) M
m=

M
Oik = 2—1 p(Dil Mu)N(Mu;; i, Ct A+ C(Mui = )T (MU = )
m=

It is obvious that the ale procedure is not suitable for high dimensionalitg. An
alternatve is that p(D;|y;) is given in a gandard analytic form which euld allov the
analytic computation of thg's. There are mangood candidate standard forms but one
of the most adaptable isalghted Sum of Gaussians (similar to Mixture of Gaussiahs b
without the requirement that the mixture probabilities sum up to one). Let

P(Dilu) = n% Cim N (Uj, im, Cim)

whereg;, is the mixture weight for Gaussiamfor data poinu;, and y;,, andC,,, are the
m" mean and oariance for poinu;. As before p(ui|6?k‘) is a Gaussian, which we denote
asN(u;; uk, C). So we can write

Oik :I p(Diu;) p(uiley")du, =
I E:ZI Cim N (Uj, Lim, Cim)§\|(ui, Hio Clduy,
=

m
Zl Qim I N (Ui, &im» Cim)N (Ui, i, Ci)duy
m=

The product of tw Gaussians is a simple function of theoteets of parametel§;,,, C;,
Him @nd u;
N (U;; £im» Cim) N(U;; 24, Ci) =
N(O; Him» Cim) N(O; ,U}(, Ctk)
N(U: timi, Ci =
(Ui; Himko Cimid) N(C, i Cirt)

N (U;; imk Cimi) Fimk

where
D—l
Cimk = S:;% + (C|t<)_1D

Himk = Cirmi(Cim tim + (Cl) ™ i
o= NG Him Cim)N(G; 444 Ci)
" N(O; Limk: Cimi)

and since we knwthat the integral of the Gaussian is the unity
m

Ok = 2 Oim fimk

m=1
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In a very similar fashion we can dezithe expression fag, anddj
ik :I p(Dilu;) p(ul6Hui du, =
i t ~t
I Dnz_l Qi N (Ui, Lim, Cim)g\‘ (U;, pg, Cy)uidy
m
2 qimI N (Ui; Himks Cimi) fimkUi du;
m=1L
m;
2 Om fika- N(Ui; Himk Cimui du, =
m=L
m
2 Oim fimk Himk

m=1

and

m;
gk = 2 Gim fimkCimk
m=L

6.4. Summary of the Algorithm

While the denation is rather complicated the steps one needs toafdthoexecute
one iteration of the algorithm are straightforwarde ¥l follo w the established practice
and name the tovdistinct groups of stepExpectationand Maximizationrespectiely
although this association is by no means direct. The Expectation step is

t
B = K7Tk Oik
2 7'
=1

and the Maximization step is:
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After we compute the parameters of all the Gaussians we can compuwg'she be
used in the next step. If th®D;|u;) is given in discrete form as a set ® samples on a
regular grid in the space spannedubthen

M
gk = X P(DilMuIN(Mu;; ', Cit+ Cy)
m=1
M
gk = X P(Dil™u) MuN(Mu;; g4, Ct +Cy)
m=1
M
gk = 2 (D ™u)(Mui = )T (Mui = mIN(Mu;; i, Ci' + Cy)
m=1
If on the other hang(D;|y;) is given as a weighted sum of Gaussians then

. 40
Cimk = 3%11 +(CJ) lD
1y

Himk = C(Cim tim + (C) ™ 1))
_ N im, Cim)N(G; 144, CL)

foo =

ik NG Limks Cimi)
m

Ok = 2 Gim fimk
m=1L
m;

Ok = 2 Gim fimk,,
m=1
m

Oik = Zl Aim T (Cims Cis Him» 1) Cimi
m=

7. Conclusion

In this report, we ndgewed briefly the concepts &lustering Expectation Maxi-
mizationand Mixture of Gaussiansand then desloped the background for clustering of
unobsered data under the Mixture of Gaussians mode. Béd Maximum Lilelihood
estimation to do this and since this problewoines hidden variables (the unobssdv
data and the membership) we usedBRpectation Maximizatio(EM) method.

Our fundamental assumption is that the data is not directly azbbmt we assume
that its probability distribution is known. Each datujris conditioned on a set of kwa
parameterd; and that datunu; is independent oD; if i =i'. We dso assume that the
D;s ae not directly dependent on the clustering parameters whideagse to the quazi-
dependence assumption we used throughout the report. Armed with these assumptions we
developed the equations for the itekegtiestimation of the gussian clusters. If the proba-
bility distribution of the data is assumed to be a parametric form the formulas could be
further further simplified and we plan to do this for future research.
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