
Technical Report CUED/F-INFENG/TR 380

Cambridge University Engineering Department

THE UNSCENTED PARTICLE FILTER

Rudolph van der Merwe? Arnaud Doucety Nando de Freitasz Eric Wan?

August 16, 2000

? Oregon Graduate Institute

Electrical and Computer Engineering

20000 NW Walker Rd.,Beaverton, OR 97006, USA

frvdmerwe,ericwang@ece.ogi.edu

y Cambridge University

Engineering Department

Cambridge CB2 1PZ, England

ad2@eng.cam.ac.uk

z UC Berkeley, Computer Science

387 Soda Hall, Berkeley

CA 94720-1776 USA

jfgf@cs.berkeley.edu

Abstract

In this paper we propose a novel method for nonlinear, non-Gaussian, on-line es-

timation. The algorithm consists of a particle �lter that uses an unscented Kalman

�lter (UKF) to generate the importance proposal distribution. The UKF allows the

particle �lter to incorporate the latest observations into a prior updating routine. In

addition, the UKF generates proposal distributions that match the true posterior more

closely and also has the capability of generating heavier tailed distributions than the

well known extended Kalman �lter. As a result, the convergence results predict that

the new �lter should outperform standard particle �lters, extended Kalman �lters and

unscented Kalman �lters. A few experiments con�rm this prediction.



1 Introduction

Filtering is the problem of estimating the state of a system as a set of observations becomes

available on-line. This problem is of paramount importance in many �elds of science,

engineering and �nance. To solve it, one begins by modeling the evolution of the system and

the noise in the measurements. The resulting models typically exhibit complex nonlinearities

and non-Gaussian distributions, thus precluding analytical solution.

The best known algorithm to solve the problem of non-Gaussian, nonlinear �ltering

(�ltering for short) is the extended Kalman �lter (Anderson and Moore 1979)1. This �lter

is based upon the principle of linearizing the measurements and evolution models using

Taylor series expansions. The series approximations in the EKF algorithm can, however,

lead to poor representations of the nonlinear functions and probability distributions of

interest. As as result, this �lter can diverge.

Recently, Julier and Uhlmann (Julier and Uhlmann 1996, Julier and Uhlmann 1997b)

have introduced a �lter founded on the intuition that it is easier to approximate a Gaussian

distribution than it is to approximate arbitrary nonlinear functions. They named this �lter

the unscented Kalman �lter (UKF). They have shown that the UKF leads to more accurate

results than the EKF and that in particular it generates much better estimates of the

covariance of the states (the EKF often seems to underestimate this quantity). Wan and

van der Merwe (Wan, van der Merwe and Nelson 2000, Wan and van der Merwe 2000)

extended the use of the UKF to parameter estimation as well as dual estimation2. They

reported a signi�cant improvement in performance over that which is achieved by using an

EKF for the same problem. The UKF has, however, the limitation that it does not apply

to general non-Gaussian distributions.

Another popular solution strategy for the general �ltering problem is to use sequential

Monte Carlo methods, also known as particle �lters: see for example (Doucet 1998, Doucet,

de Freitas and Gordon 2000, Gordon, Salmond and Smith 1993). These methods allow for

a complete representation of the posterior distribution of the states, so that any statistical

estimates, such as the mean, modes, kurtosis and variance, can be easily computed. They

can therefore, deal with any nonlinearities or distributions.

1We should point out that there are many other �nite dimensional �lters for specialized cases, including

the HMM �lter for discrete state-spaces, �lters for counting observations (Smith and Miller 1986), �lters for

dynamic models with a time-varying, unknown process noise covariance matrix (West and Harrison 1997)

and �lters applicable to classes of the exponential family state-space models (Vidoni 1999). We, however,

restrict the presentation to the most popular and general �lters for continuous state-spaces.
2Dual estimation is the problem of simultaneously estimating the state of a system as well as the model

parameters that de�ne the dynamics of the system.
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Particle �lters rely on importance sampling and, as a result, require the design of pro-

posal distributions that can approximate the posterior distribution reasonably well. In

general, it is hard to design such proposals. The most common strategy is to sample from

the probabilistic model of the states evolution (transition prior). This strategy can, how-

ever, fail if the new measurements appear in the tail of the prior or if the likelihood is

too peaked in comparison to the prior. This situation does indeed arise in several areas of

engineering and �nance, where one can encounter sensors that are very accurate (peaked

likelihoods) or data that undergoes sudden changes (non-stationarities): see for example

(Pitt and Shephard 1999, Thrun 2000). To overcome this problem, several techniques based

on linearization have been proposed in the literature (de Freitas 1999, de Freitas, Niranjan,

Gee and Doucet 2000, Doucet 1998, Pitt and Shephard 1999). For example, in (de Freitas

et al. 2000), the EKF Gaussian approximation is used as the proposal distribution for a

particle �lter. In this paper, we follow the same approach, but replace the EKF proposal

by a UKF proposal. The resulting �lter should perform better not only because the UKF

is more accurate, but because it also allows one to control the rate at which the tails of

the proposal distribution go to zero. That is, the UKF can be used to generate proposal

distributions with larger high order moments and with means that are close to the true

mean of the target distribution.

The last remark is the crux of our approach. We will show theoretically and empirically

that particle �lters with a proposal distribution obtained using the UKF outperform other

existing �lters. For comparison purposes, we will also present particle �lters that use the

EKF to generate the proposal distribution.

The remainder of this paper is organized as follows. Section 2 introduces the notation

and the general state-space model formulation. Section 3 introduces the EKF and UKF,

while sections 4 and 5 are devoted to the theory and implementation details of particle

�lters. After discussing the shortcomings of standard particles in Section 6, we propose the

new unscented particle �lter. Section 7 treats the convergence aspects of this �lter. Some

experimental results are discussed in Section 8. Finally, Section 9 contains some concluding

remarks and pointers for future research.
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2 Dynamic State-Space Model

The general state-space model (neglecting control inputs for the sake of clarity) can be

broken down into a state transition and state measurement model

p(xtjxt�1) (1)

p(ytjxt) (2)

where xt 2 R
nx denotes the states (hidden variables or parameters) of the system at time

t and yt 2 R
ny the observations. The states follow a �rst order Markov process and

the observations are assumed to be independent given the states. For example, if we are

interested in nonlinear, non-Gaussian regression, the model can be expressed as follows

xt = f(xt�1;vt�1) (3)

yt = h(ut;xt;nt) (4)

where, in this case, yt 2 R
ny denotes the output observations, ut 2 R

nu the input obser-

vations, xt 2 R
nx the state of the system, vt 2 R

nv the process noise and nt 2 R
nn the

measurement noise. The mappings f : Rnx �Rnv 7! R
nx and h : Rnx �Rnn 7! R

ny represent

the deterministic process and measurement models. To complete the speci�cation of the

model, the prior distribution (at t = 0) is denoted by p(x0).

The posterior density p(x0:tjy1:t), where x0:t = fx0;x1; : : : ;xtg and y1:t = fy1;y2; : : : ;ytg,
constitutes the complete solution to the sequential estimation problem. In many applica-

tions, such as tracking, it is of interest to estimate one of its marginals, namely the �ltering

density p(xtjy1:t). By computing the �ltering density recursively, we do not need to keep

track of the complete history of the states. Thus, from a storage point of view, the �ltering

density is more parsimonious than the full posterior density function. If we know the �lter-

ing density, we can easily derive various estimates of the system's states including means,

modes, medians and con�dence intervals. This will be our goal.

3 The EKF and Unscented Kalman Filters

In this section, we shall present the EKF and unscented �lters, which provide Gaussian ap-

proximations to p(xtjy1:t). These algorithms will be incorporated into the particle �ltering

framework in Section 6.

3.1 The Extended Kalman Filter

The EKF is a minimum mean-square-error (MMSE) estimator based on the Taylor series

expansion of the nonlinear functions f and h around the estimates �xtjt�1 of the states xt
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(Anderson and Moore 1979). For example

f(xt) = f(�xtjt�1) +
@f(xt)

@xt

��� (xt=�xtjt�1)
(xt � �xtjt�1) + � � �

Using only the linear expansion terms, it is easy to derive the following update equations for

the mean �x and covariance P of the Gaussian approximation to the posterior distribution

of the states

�xtjt�1 = f(�xt�1; 0)

Ptjt�1 = FtPt�1F
T

t +GtQtG
T

t

Kt = Ptjt�1H
T

t [UtRtU
T

t +HtPtjt�1H
T

t ]
�1

�xt = �xtjt�1 +Kt

�
yt � h(�xtjt�1; 0)

�
Pt = Ptjt�1 �KtHtPtjt�1 (5)

where Kt is known as the Kalman gain, Q is the variance of the process noise (assumed to

be zero-mean Gaussian), R is the variance of the measurement noise (also assumed to be

zero-mean Gaussian), Ft ,
@f(xt)
@xt

��� (xt=�xtjt�1)
and Gt ,

@f(vt)
@vt

��� (vt=�v) are the Jacobians of

the process model and Ht ,
@h(xt)
@xt

��� (xt=�xtjt�1)
and Ut ,

@h(nt)
@nt

��� (nt=�n) are the Jacobians of

the measurements model,

3.2 The Unscented Kalman Filter

The unscented Kalman �lter (UKF) is a recursive MMSE estimator that addresses some

of the approximation issues of the EKF (Julier and Uhlmann 1997b). Because the EKF

only uses the �rst order terms of the Taylor series expansion of the nonlinear functions,

it often introduces large errors in the estimated statistics of the posterior distributions of

the states. This is especially evident when the models are highly nonlinear and the local

linearity assumption breaks down, i.e., the e�ects of the higher order terms of the Taylor

series expansion becomes signi�cant. Unlike the EKF, the UKF does not approximate the

non-linear process and observation models, it uses the true nonlinear models and rather ap-

proximates the distribution of the state random variable. In the UKF the state distribution

is still represented by a Gaussian random variable (GRV), but it is speci�ed using a minimal

set of deterministically chosen sample points. These sample points completely capture the

true mean and covariance of the GRV, and when propagated through the true nonlinear

system, captures the posterior mean and covariance accurately to the 2nd order for any

nonlinearity, with errors only introduced in the 3rd and higher orders. To elaborate on this,

we start by �rst explaining the unscented transformation. After this the scaled unscented

transformation (SUT) is introduced and discussed. The scaled unscented transformation is

4



a generalizing extension of the unscented transformation and forms the algorithmic core of

the unscented Kalman �lter.

3.2.1 The unscented transformation

The unscented transformation (UT) is a method for calculating the statistics of a random

variable which undergoes a nonlinear transformation and builds on the principle that it is

easier to approximate a probability distribution than an arbitrary nonlinear function (Julier

and Uhlmann 1996). Consider propagating a nx dimensional random variable x through an

arbitrary nonlinear function g : Rnx 7! R
ny to generate y,

y = g(x) (6)

Assume x has mean �x and covariance Px. To calculate the statistics (�rst two moments)

of y using the UT, we proceed as follows: First, a set of 2nx+1 weighted samples or sigma

points Si = fWi;X ig are deterministically chosen so that they completely capture the true

mean and covariance of the prior random variable x. A selection scheme that satis�es this

requirement is

X 0 = �x W0 = �=(nx + �) i = 0

X i = �x+
�p

(nx + �)Px

�
i

Wi = 1=f2(nx + �)g i = 1; : : : ; nx

X i = �x�
�p

(nx + �)Px

�
i

Wi = 1=f2(nx + �)g i = nx + 1; : : : ; 2nx (7)

where � is a scaling parameter and
�p

(nx + �)Px

�
i

is the ith row or column of the ma-

trix square root of (nx + �)Px. Wi is the weight associated with the ith point such thatP2nx
i=0 Wi = 1. Each sigma point is now propagated through the nonlinear function

Y i = g(X i) i = 0; : : : ; 2nx (8)

and the estimated mean and covariance of y are computed as follows

�y =

2nxX
i=0

WiY i (9)

Py =

2nxX
i=0

Wi (Y i � �y) (Y i � �y)T : (10)

These estimates of the mean and covariance are accurate to the second order (third order for

Gaussian priors) of the Taylor series expansion of g(x) for any nonlinear function. Errors

are introduced in the third and higher order moments but are scaled by the choice of the

parameter �. In comparison, the EKF only calculates the posterior mean and covariance

accurately to the �rst order with all higher order moments truncated. For a detailed proof
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Actual (sampling) Linearized (EKF) UT

y = f(x) Py = A
T
PxA

�y = f(�x)

f(�x)

Y = f(X )

A
T
PxA

sigma points

true mean
transformed sigma points

UT mean

    and covariance
weighted sample mean

covariance

true covariance

mean

UT covariance

Figure 1: Schematic diagram of the Unscented Transformation: A cloud of 5000 samples

drawn from a Gaussian prior is propagated through an arbitrary highly nonlinear function

and the true posterior sample mean and covariance are calculated. This re
ects the truth

as calculated by a Monte Carlo approach and is shown in the left plot. Next, the posterior

random variable's statistics are calculated by a linearization approach as used in the EKF.

The middle plot shows these results. The errors in both the mean and covariance as calcu-

lated by this \�rst-order" approximation is clearly visible. The right plot shows the results

of the estimates calculated by the unscented transformation. There is almost no bias error

in the estimate of the mean and the estimated covariance is also much closer to the true

covariance. The superior performance of the UT is clearly evident.

of this, see (Julier and Uhlmann 1996). A comparison of the performance of the UT versus

that of the linearization approach used in the EKF is shown in Figure 1.

The sigma point selection scheme used in the UT has the property that as the dimension of

the state-space increases, the radius of the sphere that bounds all the sigma points increases

as well. Even though the mean and covariance of the prior distribution are still captured

correctly, it does so at the cost of sampling non-local e�ects. If the nonlinearities in question

are very severe, this can lead to signi�cant diÆculties. In order to address this problem, the

sigma points can be scaled towards or away from the mean of the prior distribution by a
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proper choice of �. The distance of the ith sigma point from �x, jX i � �xj, is proportional top
(nx + �). When � = 0, the distance is proportional to

p
nx. When � > 0 the points are

scaled further from �x and when � < 0 the points are scaled towards �x. For the special case

of � = 3� nx, the desired dimensional scaling invariance is achieved by canceling the e�ect

of nx. However, when � = 3 � nx < 0 the weight W0 < 0 and the calculated covariance

can be non-positive semide�nite. The scaled unscented transformation was developed to

address this problem (Julier 2000).

3.2.2 The scaled unscented transformation

The scaled unscented transformation (SUT) replaces the original set of sigma points with

a transformed set given by

X
0

i = X 0 + �(X i �X 0) i = 0 : : : 2nx; (11)

where � is a positive scaling parameter which can be made arbitrarily small to minimize

higher order e�ects. This formulation gives an extra degree of freedom to control the

scaling of the sigma points without causing the resulting covariance to possibly become

non-positive semide�nite. This is achieved by applying the UT to an auxiliary random

variable propagation problem which is related to the original nonlinear model of equation

(6) by

z = g
0(x) =

g [�x+ �(x� �x)]� g(�x)

�2
+ g(�x): (12)

The Taylor series expansion of �z and Pz agrees with that of �y and Py exactly up to the

second order, with the higher order terms scaling geometrically with a common ratio of

�. The same second order accuracy of the normal UT is thus retained with a controllable

scaling of the higher order errors by a proper choice of �. The auxiliary random variable

formulation of the SUT is identical to applying the original UT on a pre-scaled set of sigma

points (Julier 2000). A set of sigma points S = fW;X g is calculated using equation (7)

and then transformed into the scaled set S
0
= fW0

;X
0g by

X
0

i = X 0 + �(X i �X 0)

W
0

i =

8<: W0=�
2 + (1� 1=�2) i = 0

Wi=�
2

i 6= 0
(13)

where � is the new sigma point scaling parameter. The sigma point selection and scaling

can also be combined into a single step (thereby reducing the number of calculations) by

setting

� = �
2(nx + �)� nx (14)
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and selecting the sigma point set by:

X 0 = �x

X i = �x+
�p

(nx + �)Px

�
i

i = 1; : : : ; nx

X i = �x�
�p

(nx + �)Px

�
i

i = nx + 1; : : : ; 2nx

W
(m)
0 = �=(nx + �)

W
(c)
0 = �=(nx + �) + (1� �

2 + �)

W
(m)
i

=W
(c)
i

= 1=f2(nx + �)g i = 1; : : : ; 2nx (15)

The weighting on the zeroth sigma point directly a�ects the magnitude of the errors in

the fourth and higher order terms for symmetric prior distributions (Julier 2000). A third

parameter, �, is thus introduced which a�ects the weighting of the zeroth sigma point for

the calculation of the covariance. This allows for the minimization of higher order errors if

prior knowledge (i.e. kurtosis, etc.) of the distribution of x is available.

The complete scaled unscented transformation is thus given by the following:

1. Choose the parameters �, � and �. Choose � � 0 to guarantee positive semi-

de�niteness of the covariance matrix. The speci�c value of kappa is not critical though,

so a good default choice is � = 0. Choose 0 � � � 1 and � � 0. � controls the \size" of

the sigma point distribution and should ideally be a small number to avoid sampling

non-local e�ects when the nonlinearities are strong. � is a non-negative weighting

term which can be used to incorporate knowledge of the higher order moments of the

distribution. For a Gaussian prior the optimal choice is � = 2. This parameter can

also be used to control the error in the kurtosis which a�ects the 'heaviness' of the

tails of the posterior distribution.

2. Calculate the set of 2nx + 1 scaled sigma points and weights S = fW;X g by setting

� = �
2(nx + �) � nx and using the combined selection/scaling scheme of equation

(15). As mentioned earlier, nx is the dimension of x.

3. Propagate each sigma point through the nonlinear transformation

Y i = g (X i) i = 0; : : : ; 2nx

4. The mean �y and covariance Py are computed as follows

�y =

2nxX
i=0

W
(m)
i
Y i

Py =

2nxX
i=0

W
(c)
i
fY i � �yg fYi � �ygT
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3.2.3 Implementing the Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is a straightforward application of the scaled unscented

transformation to recursive minimum mean-square-error (RMMSE) estimation (Julier and

Uhlmann 1997b), where the state random variable (RV) is rede�ned as the concatenation

of the original state and noise variables: xat = [xTt v
T
t n

T
t ]

T . The SUT sigma point selection

scheme is applied to this new augmented state RV to calculate the corresponding sigma

matrix, X a

t . The complete UKF algorithm that updates the mean �x and covariance P of

the Gaussian approximation to the posterior distribution of the states is given by:

1. Initialize with:

�x0 = E[x0]

P0 = E[(x0 � �x0)(x0 � �x0)
T ]

�xa0 = E[xa] = [�xT0 0 0]T

P
a

0 = E[(xa0 � �xa0)(x
a

0 � �xa0)
T ] =

2664
P0 0 0

0 Q 0

0 0 R

3775
2. For t 2 f1; : : : ;1g,

(a) Calculate sigma points:

X a

t�1 =
h
�xat�1 �xat�1 �

q
(na + �)Pa

t�1

i
(b) Time update:

X x

tjt�1 = f
�
X x

t�1;X
v

t�1

�
�xtjt�1 =

2naX
i=0

W
(m)
i

X x

i;tjt�1

Ptjt�1 =

2naX
i=0

W
(c)
i

[X x

i;tjt�1 � �xtjt�1][X x

i;tjt�1 � �xtjt�1]
T

Y tjt�1 = h

�
X x

tjt�1;X
n

t�1

�
�ytjt�1 =

2naX
i=0

W
(m)
i

Yi;tjt�1
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(c) Measurement update equations:

P~yt~yt =

2naX
i=0

W
(c)
i

[Yi;tjt�1 � �ytjt�1][Yi;tjt�1 � �ytjt�1]
T

Pxtyt
=

2naX
i=0

W
(c)
i

[Xi;tjt�1 � �xtjt�1][Yi;tjt�1 � �ytjt�1]
T

Kt = Pxtyt
P
�1
~yt~yt

�xt = �xtjt�1 +Kt(yt � �ytjt�1)

Pt = Ptjt�1 �KtP~yt~ytK
T

t

where, xa = [xT v
T
n
T ]T , X a = [(X x)T (X v)T (X n)T ]T , �=composite scaling pa-

rameter, na = nx + nv + nn, Q=process noise cov., R= measurement noise cov.,

K=Kalman gain,Wi=weights as calculated in Eqn. 15.

Note that no explicit calculation of Jacobians or Hessians are necessary to implement

this algorithm. The UKF requires computation of a matrix square root which can be

implemented directly using a Cholesky factorization in order n3x=6. However, the covariance

matrices can be expressed recursively, and thus the square-root can be computed in order

n
2
x by performing a recursive update to the Cholesky factorization. So, not only does the

UKF outperform the EKF in accuracy and robustness, it does so at no extra computational

cost. The superior performance of the UKF over that of the EKF have been reported in

numerous publications including (Wan et al. 2000, Wan and van der Merwe 2000, Chong

and Kleeman 1997, Julier and Uhlmann 1997b, Julier and Uhlmann 1997a, Clark 1999).

This is the most general form of the unscented Kalman �lter. For the special (but often

found) case where the process and measurement noise are purely additive, the computational

complexity of the UKF can be reduced. In such a case, the system state need not be

augmented with the noise RV's. This reduces the dimension of the sigma points as well

as the total number of sigma points used. The covariances of the noise sources are then

incorporated into the state covariance using a simple additive procedure. For more details,

see (Julier and Uhlmann 1997b).

4 Particle Filtering

We have so far presented two nonlinear �ltering strategies that rely on Gaussian approxi-

mation. In this section, we shall present a �ltering method (particle �ltering) that does not

require this assumption. However, it has other problems as we will point out in Section 6.

In that section, we will show that it is possible to overcome some of the problems inherent
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to particle �lters by combining them with the EKF and UKF strategies in a theoretically

valid setting.

In recent years, many researchers in the statistical and signal processing communities

have, almost simultaneously, proposed several variations of particle �ltering algorithms. In

recent years, many researchers in the statistical and signal processing communities have, al-

most simultaneously, proposed several variations of particle �ltering algorithms. As pointed

out in (Liu, Chen and Logvinenko 2000), basic sequential Monte Carlo methods, based on

sequential importance sampling, had already been introduced in the physics and statis-

tics literature in the �fties! (Hammersley and Morton 1954, Rosenbluth and Rosenbluth

1955). These methods were also introduced in the automatic control �eld in the late sixties

(Doucet 1998, Handschin and Mayne 1969). In the seventies, various researchers continued

working on these ideas (Akashi and Kumamoto 1977, Handschin 1970, Zaritskii, Svetnik

and Shimelevich 1975). However, all these earlier implementations were based on plain

sequential importance sampling, which, as we shall see later, degenerates with time. The

major contribution towards allowing this class of algorithm to be of any practical use was

the inclusion of a resampling stage in the early nineties (Gordon et al. 1993). Since then

many new improvements have been proposed (Doucet et al. 2000).

Before presenting particle �ltering algorithms, we need to review perfect Monte Carlo

simulation and importance sampling. This will allow us to present particle �lters in a very

general setting.

4.1 Perfect Monte Carlo Simulation

In Monte Carlo simulation, a set of weighted particles (samples), drawn from the posterior

distribution, is used to map integrals to discrete sums. More precisely, the posterior can be

approximated by the following empirical estimate

bp(x0:tjy1:t) = 1

N

NX
i=1

Æ
x
(i)
0:t

(dx0:t)

where the random samples fx(i)0:t; i = 1; : : : ; Ng, are drawn from the posterior distribution

and Æ(d�) denotes the Dirac delta function. Consequently, any expectations of the form

E
�
gt(x0:t)

�
=

Z
gt(x0:t)p(x0:tjy1:t)dx0:t

may be approximated by the following estimate

E
�
gt(x0:t)

�
=

1

N

NX
i=1

gt(x
(i)
0:t)
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where the particles x
(i)
0:t are assumed to be independent and identically distributed (i.i.d.) for

the approximation to hold. According to the law of large numbers, we have E
�
gt(x0:t)

� a:s:����!
N!1

E
�
gt(x0:t)

�
, where

a:s:����!
N!1

denotes almost surely convergence. Moreover, if the posterior

variance of gt(x0:t) is bounded, that is varp(�jy1:t)
�
gt(x0:t)

�
<1, then the following central

limit theorem holds

p
N

�
E
�
gt(x0:t)

�� E
�
gt(x0:t)

��
=)
N!1

N
�
0; varp(�jy1:t)

�
gt(x0:t)

��
where =)

N!1
denotes convergence in distribution.

4.2 Bayesian Importance Sampling

As mentioned in the previous section, one can approximate the posterior distribution with

a function on a �nite discrete support. Consequently, it follows from the strong law of large

numbers that as the number or samples N increases, expectations can be mapped into

sums. Unfortunately, it is often impossible to sample directly from the posterior density

function. However, we can circumvent this diÆculty by sampling from a known, easy-to-

sample, proposal distribution q(x0:tjy1:t) and making use of the following substitution

E
�
gt(x0:t)

�
=

Z
gt(x0:t)

p(x0:tjy1:t)
q(x0:tjy1:t)q(x0:tjy1:t)dx0:t

=

Z
gt(x0:t)

p(y1:tjx0:t)p(x0:t)
p(y1:t)q(x0:tjy1:t)q(x0:tjy1:t)dx0:t

=

Z
gt(x0:t)

wt(x0:t)

p(y1:t)
q(x0:tjy1:t)dx0:t

where the variables wt(x0:t) are known as the unnormalized importance weights

wt =
p(y1:tjx0:t)p(x0:t)

q(x0:tjy1:t) (16)

We can get rid of the unknown normalizing density p(y1:t) as follows

E
�
gt(x0:t)

�
=

1

p(y1:t)

Z
gt(x0:t)wt(x0:t)q(x0:tjy1:t)dx0:t

=

R
gt(x0:t)wt(x0:t)q(x0:tjy1:t)dx0:tR
p(y1:tjx0:t)p(x0:t) q(x0:tjy1:t)q(x0:tjy1:t)

dx0:t

=

R
gt(x0:t)wt(x0:t)q(x0:tjy1:t)dx0:tR

wt(x0:t)q(x0:tjy1:t)dx0:t

=
E q(�jy1:t )

�
wt(x0:t)gt(x0:t)

�
E q(�jy1:t )

�
wt(x0:t)

�
where the notation E q(�jy1:t ) has been used to emphasize that the expectations are taken over

the proposal distribution q(�jy1:t). Hence, by drawing samples from the proposal function
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q(�jy1:t), we can approximate the expectations of interest by the following estimate

E
�
gt(x0:t)

�
=

1=N
P

N

i=1 gt(x
(i)
0:t)wt(x

(i)
0:t)

1=N
P

N

i=1 wt(x
(i)
0:t)

=

NX
i=1

gt(x
(i)
0:t) ewt(x

(i)
0:t) (17)

where the normalized importance weights ew(i)
t

are given by

ew(i)
t

=
w
(i)
tP

N

j=1w
(j)
t

The estimate of equation (17) is biased as it involves a ratio of estimates. However, it is

possible to obtain asymptotic convergence and a central limit theorem for E
�
gt(x0:t)

�
under

the following assumptions (Doucet 1998, Geweke 1989):

1. x
(i)
0:t corresponds to a set of i.i.d. samples drawn from the proposal distribution, the

support of the proposal distribution includes the support of the posterior distribution

and E
�
gt(x0:t)

�
exists and is �nite.

2. The expectations of wt and wtg
2
t (x0:t) over the posterior distribution exist and are

�nite.

A suÆcient condition to verify the second assumption is to have bounds on the variance of

gt(x0:t) and on the importance weights (Geweke 1989, Crisan and Doucet 2000). Thus, as

N tends to in�nity, the posterior density function can be approximated arbitrarily well by

the point-mass estimate

bp(x0:tjy1:t) = NX
i=1

ew(i)
t
Æ
x
(i)

0:t

(dx0:t)

4.3 Sequential Importance Sampling

In order to compute a sequential estimate of the posterior distribution at time t without

modifying the previously simulated states x0:t�1, proposal distributions of the following

form can be used,

q(x0:tjy1:t) = q(x0:t�1jy1:t�1)q(xtjx0:t�1;y1:t) ; (18)

Here we are making the assumption that the current state is not dependent on future

observations, i.e., we're doing �ltering and not smoothing. It needs to be emphasized that

more general proposals, which modify previously simulated trajectories, might be necessary

in some scenarios (Pitt and Shephard 1999). This issue is, however, beyond the scope of

13



this paper. Under our assumptions that the states correspond to a Markov process and

that the observations are conditionally independent given the states, we get

p(x0:t) = p(x0)

tY
j=1

p(xjjxj�1) and p(y1:tjx0:t) =
tY

j=1

p(yj jxj) (19)

By substituting equations (18) and (19) into equation (16), a recursive estimate for the

importance weights can be derived as follows

wt =
p(y1:tjx0:t)p(x0:t)

q(x0:t�1jy1:t�1)q(xtjx0:t�1;y1:t)

= wt�1
p(y1:tjx0:t)p(x0:t)

p(y1:t�1jx0:t�1)p(x0:t�1)

1

q(xtjx0:t�1;y1:t)

= wt�1
p(ytjxt)p(xtjxt�1)

q(xtjx0:t�1;y1:t)
(20)

Equation (20) provides a mechanism to sequentially update the importance weights,

given an appropriate choice of proposal distribution, q(xtjx0:t�1;y1:t). The exact form of

this distribution is a critical design issue and is usually approximated in order to facilitate

easy sampling. The details of this is discussed in the next section. Since we can sample

from the proposal distribution and evaluate the likelihood and transition probabilities, all

we need to do is generate a prior set of samples and iteratively compute the importance

weights. This procedure, known as sequential importance sampling (SIS), allows us to

obtain the type of estimates described by equation (17).

4.3.1 Choice of proposal distribution

The choice of proposal function is one of the most critical design issues in importance

sampling algorithms and forms the main issue addressed in this paper. The preference for

proposal functions that minimize the variance of the importance weights is advocated by

(Doucet 1997). The following result has been proved:

Proposition 1 [Proposition 3 of (Doucet, Gordon and Krishnamurthy 1999)] The proposal

distribution q(xtjx0:t�1;y1:t) = p(xtjx0:t�1;y1:t) minimizes the variance of the importance

weights conditional on x0:t�1 and y1:t.

This choice of proposal distribution has also been advocated by other researchers (Kong,

Liu and Wong 1994, Liu and Chen 1995, Zaritskii et al. 1975). Nonetheless, the distribution

q(xtjx0:t�1;y1:t) $ p(xtjxt�1) (21)

(the transition prior) is the most popular choice 3 of proposal function (Avitzour 1995, Bea-

dle and Djuri�c 1997, Gordon et al. 1993, Isard and Blake 1996, Kitagawa 1996). Although

3A $ B implies that we choose B to approximate A.
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it results in higher Monte Carlo variation than the optimal proposal p(xtjx0:t�1;y1:t), as a

result of it not incorporating the most recent observations, it is usually easier to implement

(Berzuini, Best, Gilks and Larizza 1997, Doucet 1998, Liu and Chen 1998). The transition

prior is de�ned in terms of the probabilistic model governing the states' evolution (3) and

the process noise statistics. For example, if an additive Gaussian process noise model is

used, the transition prior is simply,

p(xtjxt�1) = N (f (xt�1; 0) ; Qt�1) : (22)

As illustrated in Figure 2, if we fail to use the latest available information to propose

new values for the states, only a few particles will have signi�cant importance weights

when their likelihood are evaluated. It is therefore of paramount importance to move the

particles towards the regions of high likelihood. This problem also arises when the likelihood

function is too narrow compared to the prior. In Sections 6 and 7, we shall describe several

algorithms, based on linearization and the unscented transformation, to implement the

optimal importance function.

4.3.2 Degeneracy of the SIS algorithm

The SIS algorithm discussed so far has a serious limitation: the variance of the importance

weights increases stochastically over time. In order to show this we begin by expanding

Equation (16),

.

LikelihoodPrior

Figure 2: The optimal importance distribution allows us to move the samples in the prior

to regions of high likelihood. This is of paramount importance if the likelihood happens

to lie in one of the tails of the prior distribution, or if it is too narrow (low measurement

error).
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wt =
p(y1:tjx0:t)p(x0:t)

q(x0:tjy1:t)
=

p(y1:t;x0:t)

q(x0:tjy1:t)
=

p(x0:tjy1:t)p(y1:t)
q(x0:tjy1:t)

/ p(x0:tjy1:t)
q(x0:tjy1:t) (23)

The ratio in the last line4 of Equation (23) is called the importance ratio and it can be

shown that its variance increases over time. For a proof of this, see (Kong et al. 1994) and

(Doucet et al. 1999). We thus state (without proof):

Proposition 2 [Page 285 of (Kong et al. 1994), proposition 4 of (Doucet et al. 1999)]

The unconditional variance (that is, when the observations are regarded as random) of the

importance ratios increases over time.

To understand why the variance increase poses a problem, suppose that we want to

sample from the posterior. In that case, we want the proposal density to be very close5 to

the posterior density. When this happens, we obtain the following results for the mean and

variance (see (Doucet 1997) for a proof)

E q(�jy1:t )

�
p(x0:tjy1:t)
q(x0:tjy1:t)

�
= 1

and

varq(�jy1:t)

�
p(x0:tjy1:t)
q(x0:tjy1:t)

�
= E q(�jy1:t )

��
p(x0:tjy1:t)
q(x0:tjy1:t) � 1

�2�
= 0

In other words, we want the variance to be close to zero in order to obtain reasonable

estimates. Therefore, a variance increase has a harmful e�ect on the accuracy of the sim-

ulations. In practice, the degeneracy caused by the variance increase can be observed by

monitoring the importance weights. Typically, what we observe is that, after a few iter-

ations, one of the normalized importance weights tends to 1, while the remaining weights

tend to zero. A large number of samples are thus e�ectively removed from the sample

set because their importance weights become numerically insigni�cant. The next section

presents a strategy to reduce this degeneration or depletion of samples.

4The proportionality in the last line of the equation follows from the fact that p(y1:t) is a constant.
5Closeness is de�ned over the full support of the true posterior. This implies that the best possible (but

not practical) choice for the proposal is q(x0:tjy1:t) = p(x0:tjy1:t)
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4.4 Selection

To avoid the degeneracy of the SIS simulation method, a selection (resampling) stage may

be used to eliminate samples with low importance weights and multiply samples with high

importance weights. It is possible to see an analogy to the steps in genetic algorithms

(Higuchi 1997).

A selection scheme associates to each particle x
(i)
0:t a number of \children", say Ni 2 N,

such that
P

N

i=1Ni = N . Several selection schemes have been proposed in the literature.

These schemes satisfy E
�
Ni

�
= N ew(i)

t
but their performance varies in terms of the variance

of the particles var
�
Ni

�
. Results in (Kitagawa 1996) and (Crisan, Del Moral and Lyons

1999) indicate that the restriction E
�
Ni

�
= N ew(i)

t
is unnecessary to obtain convergence

results. So it is possible to design biased but computationally inexpensive selection schemes.

We will now present a number of selection or resampling schemes, namely: sampling-

importance resampling (SIR), residual resampling and minimum variance sampling. We

found that the speci�c choice of resampling scheme does not signi�cantly a�ect the per-

formance of the particle �lter, so we used residual resampling in all of the experiments in

Section 9.

4.4.1 Sampling-importance resampling (SIR) and multinomial sampling

Many of the ideas on resampling have stemmed from the work of Efron (Efron 1982),

Rubin (Rubin 1988) and Smith and Gelfand (Smith and Gelfand 1992). Resampling in-

volves mapping the Dirac random measure fx(i)0:t; ew(i)
t
g into an equally weighted random

sampling

Index

i

j resampled index p(i)

cdf   

1

( )j
tw�

1N −

Figure 3: Resampling process, whereby a random measure fx(i)1:t; ew(i)
t
g is mapped into an

equally weighted random measure fx(j)1:t ; N
�1g. The index i is drawn from a uniform distri-

bution.
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measure fx(j)0:t ; N
�1g. This can be accomplished by sampling uniformly from the discrete

set fx(i)0:t; i = 1; : : : ; Ng with probabilities f ew(i)
t
; i = 1; : : : ; Ng as proposed in the seminal

paper of Gordon, Salmond and Smith (1993). A mathematical proof of this can be found

on pages 111{112 of (Gordon 1994). Figure 3 shows a way of sampling from this discrete

set. After constructing the cumulative distribution of the discrete set, a uniformly drawn

sampling index i is projected onto the distribution range and then onto the distribution

domain. The intersection with the domain constitutes the new sample index j. That is,

the vector x
(j)
0:t is accepted as the new sample. Clearly, the vectors with the larger sampling

weights will end up with more copies after the resampling process.

Sampling N times from the cumulative discrete distribution
P

N

i=1 ew(i)
t
Æ
x
(i)

0:t

(dx0:t) is

equivalent to drawing (Ni; i = 1; : : : ; N) from a multinomial distribution with parameters

N and ew(i)
t
. This procedure can be implemented in O (N) operations (Doucet 1998, Pitt

and Shephard 1999) following the work of (Ripley 1987, pp. 96). As we are sampling from

a multinomial distribution, the variance is var(Ni) = N ew(i)
t

�
1 � ew(i)

t

�
. As pointed out in

(Carpenter, Cli�ord and Fearnhead 1999) and (Liu and Chen 1998), it is possible to design

selection schemes with lower variance.

4.4.2 Residual resampling

This procedure involves the following steps (Higuchi 1997, Liu and Chen 1998). Firstly,

set eNi =
j
N ew(i)

t

k
. Secondly, perform an SIR procedure to select the remaining N t =

N �PN

i=1
eNi samples with new weights w

0(i)
t

= N
�1
t

� ew(i)
t
N � eNi

�
. Finally, add the results

to the current eNi. For this scheme, the variance
�
var(Ni) = N tw

0(i)
t

�
1 � w

0(i)
t

��
is smaller

than the one given by the SIR scheme. Moreover, this procedure is computationally cheaper.

4.4.3 Minimum variance sampling

This strategy includes the strati�ed/systematic sampling procedures introduced in (Kita-

gawa 1996) and the Tree Based Branching Algorithm presented in (Crisan 2000). One

samples a set of N points U in the interval [0; 1], each of the points a distance N�1 apart.

The number of children Ni is taken to be the number of points that lie between
P

i�1
j=1 ew(j)

t

and
P

i

j=1 ew(j)
t
. This strategy introduces a variance on Ni even smaller than the residual

resampling scheme, namely var(Ni) = N tw
0(i)
t

�
1�N tw

0(i)
t

�
. Its computational complexity

is O (N).
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5 The Particle Filter Algorithm

We have so far explained how to compute the importance weights sequentially and how to

improve the sample set by resampling. The pseudo-code of a generic particle �lter can now

be presented.
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Generic Particle Filter

1. Initialization: t = 0

� For i = 1; : : : ; N; draw the states x
(i)
0 from the prior p(x0).

2. For t = 1; 2; : : :

(a) Importance sampling step

� For i = 1; : : : ; N , sample bx(i)t � q(xtjx
(i)
0:t�1;y1:t) and set bx(i)0:t ,

�
x
(i)
0:t�1; bx(i)t �

� For i = 1; : : : ; N , evaluate the importance weights up to a normalizing constant:

w
(i)
t = w

(i)
t�1

p(ytjbx(i)t )p(bx(i)t jx
(i)
t�1)

q(bx(i)t jx
(i)
0:t�1;y1:t)

(24)

� For i = 1; : : : ; N , normalize the importance weights:

ew(i)
t = w

(i)
t

� NX
j=1

w
(j)
t

��1

(b) Selection step (resampling)

� Multiply/Suppress samples bx(i)0:t with high/low importance weights ew(i)
t , respec-

tively, to obtain N random samples x
(i)
0:t approximately distributed according to

p(x
(i)
0:tjy1:t).

� For i = 1; : : : ; N , set w
(i)
t = ew(i)

t = 1
N

(c) Output: The output of the algorithm is a set of samples that can be used to approxi-

mate the posterior distribution as follows

p (x0:tjy1:t) � bp (x0:tjy1:t) = 1

N

NX
i=1

Æ
(x

(i)
0:t)

(dx0:t)

One obtains straightforwardly the following estimate of E (gt (x0:t))

E (gt (x0:t)) =

Z
gt (x0:t) p (x0:tjy1:t) dx0:t �

1

N

NX
i=1

gt

�
x
(i)
0:t

�

for some function of interest gt : (Rnx )(t+1) ! R
ngt integrable with respect to

p (x0:tjy1:t). Examples of appropriate functions include the marginal conditional mean

of x0:t, in which case gt (x0:t) = xt, or the marginal conditional covariance of x0:t

with gt (x0:t) = xtx
0
t� Ep( xtjy1:t) [xt] E

0
p( xtjy1:t)

[xt]. The marginal conditional mean

is often the quantity of interest, because it is the optimal MMSE estimate of the

current state of the system.
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Figure 4: In this example, a standard particle �lter starts at time t� 1 with an unweighted

measure fex(i)
t�1; N

�1g, which provides an approximation of p(xt�1jy1:t�2). For each particle

we compute the importance weights using the information at time t � 1. This results in

the weighted measure fex(i)
t�1; ew(i)

t�1g, which yields an approximation p(xt�1jy1:t�1). Subse-

quently, the resampling step selects only the \�ttest" particles to obtain the unweighted

measure fex(i)
t�1; N

�1g, which is still an approximation of p(xt�1jy1:t�1) . Finally, the sam-

pling (prediction) step introduces variety, resulting in the measure fex(i)
t
; N

�1g, which is an

approximation of p(xtjy1:t�1).

A graphical representation of the algorithm is shown in Figure 4. The generic PF

algorithm is rather straightforward to implement, but to make it robust, we need to consider

some improvements discussed in the following section.

6 Improving Particle Filters

The success of the PF algorithm depends on the validity of the following underlying as-

sumptions:

Monte Carlo (MC) assumption : The Dirac point-mass approximation provides an ad-

equate representation of the posterior distribution.
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Importance sampling (IS) assumption : It is possible to obtain samples from the pos-

terior by sampling from a suitable proposal distribution and applying importance

sampling corrections.

If any of these conditions are not met, the PF algorithm can perform poorly. The dis-

creteness of the approximation poses a resolution problem. In the resampling stage, any

particular sample with a high importance weight will be duplicated many times. As a result,

the cloud of samples may eventually collapse to a single sample. This degeneracy will limit

the ability of the algorithm to search for lower minima in other regions of the error surface.

In other words, the number of samples used to describe the posterior density function will

become too small and inadequate. A brute force strategy to overcome this problem is to

increase the number of particles. A more re�ned strategy is to implement a Markov chain

Monte Carlo (MCMC) step after the selection step as discussed in the following subsection.

6.1 MCMC Move Step

After the selection scheme at time t, we obtain N particles distributed marginally approx-

imately according to p(x0:tjy1:t). Since the selection step favors the creation of multiple

copies of the \�ttest" particles, it enables us to track time varying �ltering distributions.

However, many particles might end up having no children (Ni = 0), whereas others might

end up having a large number of children, the extreme case being Ni = N for a particular

value i. In this case, there is a severe depletion of samples. We, therefore, require a pro-

cedure to introduce sample variety after the selection step without a�ecting the validity of

the approximation.

A strategy for solving this problem involves introducing MCMC steps of invariant dis-

tribution p(x0:tjy1:t) on each particle (Andrieu, de Freitas and Doucet 1999b, Carpenter

et al. 1999, Doucet and Gordon 1999, Gilks and Berzuini 1998, MacEachern, Clyde and

Liu 1999). The basic idea is that if the particles are distributed according to the posterior

p(ex0:tjy1:t), then applying a Markov chain transition kernel K(x0:tjex0:t), with invariant dis-

tribution p(x0:tjy1:t) such that
R K(x0:tjex0:t)p(ex0:tjy1:t) = p(x0:tjy1:t), still results in a set of

particles distributed according to the posterior of interest. However, the new particles might

have been moved to more interesting areas of the state-space. In fact, by applying a Markov

transition kernel, the total variation of the current distribution with respect to the invariant

distribution can only decrease. Note that we can incorporate any of the standard MCMC

methods, such as the Gibbs sampler and Metropolis Hastings algorithms, into the �ltering

framework, but we no longer require the kernel to be ergodic. The MCMC move step can

also be interpreted as sampling from the �nite mixture distribution N�1
P

N

i=1K(x0:tjex(i)0:t).
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Convergence results for this type of algorithm are presented in (Gilks and Berzuini 1998).

One can generalize this idea by introducing MCMC steps on the product space with

invariant distribution
NQ
i=1

p(x
(i)
0:tjy1:t), that is to apply MCMC steps on the entire population

of particles. It should be noted that independent MCMC steps spread out the particles in a

particular mode more evenly, but do not explore modes devoid of particles, unless \clever"

proposal distributions are available. By adopting MCMC steps on the whole population, we

can draw upon many of the ideas developed in parallel MCMC computation. In this work,

however, we limit ourselves to the simpler case of using independent MCMC transitions

steps on each particle. In the case of standard particle �lters, we propose to sample from

the transition prior and accept according to a Metropolis-Hastings (MH) step as follows.

Smoothing MH step

� Sample v � U[0;1].

� Sample the proposal candidate x
?(i)
t � p(xtjx

(i)
t�1)

� If v � min

�
1;

p(ytjx
?(i)
t )

p(ytjex
(i)
t )

�
{ then accept move:

x
(i)
0:t =

�ex(i)0:t�1;x
?(i)
t

�
{ else reject move:

x
(i)
0:t = ex(i)0:t

End If.

It is possible, however, to use more complex proposals such as mixtures of Metropolis-

Hastings steps to ensure an eÆcient exploration of the sample space (de Freitas 1999). It

is even possible to implement reversible jump MCMC steps (Green 1995) so as to allow

the particles to move from one subspace to other subspaces of, possibly, di�erent dimension

(Andrieu, de Freitas and Doucet 1999a). Later, we shall describe MCMC steps that use the

EKF and unscented �lters to generate the proposal distributions.

6.2 Designing Better Importance Proposals

The importance sampling approximation depends on how close the proposal distribution is

to the posterior distribution. As illustrated in Figure 2, if the likelihood is too peaked or if

there is little overlap between the prior and the likelihood, one needs to move the samples
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to regions of high likelihood. Various approaches have been proposed to solve this problem.

We present some of them.

6.2.1 Prior editing, rejection methods and auxiliary particle �lters

Prior editing (Gordon et al. 1993) is an ad-hoc acceptance test for proposing particles in

regions of high likelihood. After the prediction step, the residual error et = yt � ht(bx(i)t ) is

computed. If jetj > Kl

p
r, where r is the scale of the measurement error model and Kl is a

constant chosen to indicate the region of non-negligible likelihood, then the sample bx(i)
t

is

rejected. The procedure is repeated until a speci�ed number of particles is accepted. The

problem with this approach is that it is too heuristic and can be computationally intensive

unless the rejection rate is small. In addition, it introduces a bias on the distribution of the

particles.

Rejection methods: If the likelihood is bounded, say p(ytjxt) < Mt, it is possible

to sample from the optimal importance distribution p(xtjxt�1;yt) using an accept/reject

procedure. Firstly, we obtain a sample from the prior bx � p(xtjxt�1) and a uniform vari-

able u � U[0;1]. Subsequently, the sample from the prior is accepted if u � p(ytjbxt)=Mt.

Otherwise, we reject the proposed sample and repeat the process until N samples are ac-

cepted. Unfortunately, the rejection sampler requires a random number of iterations at each

time step. This proves to be computationally expensive in high-dimensional spaces (Doucet

1998, M�uller 1991, Pitt and Shephard 1999).

The auxiliary particle �lter (Pitt and Shephard 1999) allows us to obtain approximate

samples from the optimal importance distribution by introducing an auxiliary variable k.

Speci�cally, the aim of the algorithm is to draw samples from the joint distribution

q(xt; kjx0:t�1;y1:t) / p(ytj�(k)t
)p(xtjx(k)t�1)p(x

(k)
1:t�1jy1:t�1)

where �
(k)
t
; k = 1; : : : ; N is the mean, mode, draw, or some other value associated with

the transition prior. One way to accomplish this objective is to evaluate the marginal

auxiliary variable weights g(kjx0:t�1;y1:t) / p(ytj�(k)t
)p(x

(k)
1:t�1jy1:t�1) and use them to select

M particles from the transition prior. Typically, one boosts the sample set so that M > N .

The particle �lter then proceeds to evaluate the correction weights

wt =
p(ytjx(j)t

)

p(ytj�(kj)t
)

where j = 1; : : : ;M and kj denotes the k-th \parent" of particle j. Finally, the correction

weights are used to perform a second selection step to obtain N particles approximately

distributed according to the posterior distribution.
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In comparison to the SIR �lter, the auxiliary particle �lter can generate better estimates

of the posterior whenever the likelihood is situated in one of the priors tails. On the

other hand, if the likelihood and prior coincide, the SIR �lter can produce more accurate

estimates. The latter behavior is a consequence of the extra variance introduced by the

additional selection step.

One alternative way of viewing the auxiliary particle �lter is to interpret the distribu-

tion q(xt; kjx0:t�1;y1:t) as the importance proposal. In doing so, the following importance

weights are obtained

wt / p(x
(k)
0:t jy1:t)

p(ytj�(k)t
)p(xtjx(k)t�1)p(x

(k)
1:t�1jy1:t�1)

/ p(ytjx(k)t
)p(xtjx(k)t�1)p(x

(k)
1:t�1jy1:t�1)

p(ytj�(k)t
)p(xtjx(k)t�1)p(x

(k)
1:t�1jy1:t�1)

=
p(ytjx(k)t

)

p(ytj�(k)t
)

The three methods presented above for designing better proposal distributions have

numerous ineÆciencies as discussed in the literature. For this reason we didn't include

them in the �lter set used for the experiments in Section 9. We presented them here for

completeness though and refer the reader to the literature for more detail and experimental

results.

6.2.2 Local linearization

This is a popular method for devising proposal distributions that approximate the optimal

importance distribution, by incorporating the most current observation with the optimal

Gaussian approximation of the state: see (Doucet 1998, Pitt and Shephard 1999) for exam-

ple. It relies on the �rst order Taylor series expansions of the likelihood and transition prior

as described in Section 3.1, as well as a Gaussian assumption on all the random variables

in question. In this framework, the EKF approximates the optimal MMSE estimator of the

system state by calculating the conditional mean of the state, given all of the observations.

This is done in recursive framework, by propagating the Gaussian approximation of the

posterior distribution through time, combining it at each time step with the new observa-

tion. In other words, the EKF calculates the following recursive approximation to the true

posterior �ltering density,

p(xtjy1:t) � pN (xtjy1:t) = N ��xt; bPt

�
(25)

Within the particle �lter framework, a separate EKF is used to generate and propagate
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a Gaussian proposal distribution for each particle, i.e.,

q(x
(i)
t
jx(i)0:t�1;y1:t) $ N

�
�x
(i)
t
; bP(i)

t

�
i = 1; : : : ; N: (26)

That is, at time t�1 one uses the EKF equations, with the new data, to compute the mean

and covariance of the importance distribution for each particle. Next, we sample the i-th

particle from this distribution. The method requires that we propagate the covariance bP (i)

and specify the EKF process and measurement noise covariances. This new �lter is called

the extended Kalman particle �lter.

Since the EKF is an MMSE estimator, this local linearization method leads to an im-

proved annealed sampling algorithm, whereby the variance of each proposal distribution

changes with time. Ideally, we start searching over a large region of the error surface and

as time progresses, we concentrate on the regions of lower error.

Although the EKF moves the prior towards the likelihood, thus possibly creating a

better proposal distribution, this is done at the cost of making a Gaussian assumption on

the form of the posterior as well as introducing inaccuracies due to linearization. When

we compare the form of Equation (25) to the Gaussian transition prior of Equation (22),

we see that EKF generated proposal distribution does indeed include the e�ect of the most

current observation at time t. In general though (even with additive Gaussian process

and measurement noise models), the true form of this density will not be Gaussian. This

can easily be shown using a Bayes rule expansion of the proposal distribution. Because

of this, we have to experimentally determine if we are gaining more than we lose in �lter

performance. The results of this is shown in Section 9. The unscented particle �lter was

developed to address some of the short-comings of the extended Kalman particle �lter and

is presented in Section 7.

The pseudo-code for the extended Kalman particle �lter follows.
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Extended Kalman particle �lter

1. Initialization: t = 0

� For i = 1; : : : ; N; draw the states (particles) x
(i)
0 from the prior p(x0).

2. For t = 1; 2; : : :

(a) Importance sampling step

� For i = 1; : : : ; N :

{ Compute the Jacobians F
(i)
t & G

(i)
t and H

(i)
t & U

(i)
t of the process and

measurement models.

{ Update the particles with the EKF:

�x
(i)
tjt�1 = f(x

(i)
t�1)

P
(i)
tjt�1 = F

(i)
t P

(i)
t�1F

T (i)
t +G

(i)
t QtG

T (i)
t

Kt = P
(i)
tjt�1H

T (i)
t [U

(i)
t RtU

T (i)
t +H

(i)
t P

(i)
tjt�1H

T (i)
t ]�1

�x
(i)
t = �x

(i)
tjt�1 +Kt(yt � h(�x

(i)
tjt�1))

bP(i)

t = P
(i)
tjt�1 �KtH

(i)
t P

(i)
tjt�1

{ Sample bx(i)t � q(x
(i)
t jx

(i)
0:t�1;y1:t) = N

�
�x
(i)
t ; bP(i)

t

�
{ Set bx(i)0:t ,

�
x
(i)
0:t�1; bx(i)t �

and bP(i)

0:t ,
�
P

(i)
0:t�1;

bP(i)

t

�
� For i = 1; : : : ; N , evaluate the importance weights up to a normalizing constant:

w
(i)
t /

p(ytjbx(i)t )p(bx(i)t jx
(i)
t�1)

q(bx(i)t jx
(i)
0:t�1;y1:t)

� For i = 1; : : : ; N , normalize the importance weights.

(b) Selection step

� Multiply/Suppress particles (bx(i)0:t;
bP(i)

0:t) with high/low importance weights ew(i)
t ,

respectively, to obtain N random particles (ex(i)0:t;
eP(i)

0:t).

(c) MCMC step (optional)

� Apply a Markov transition kernel with invariant distribution given by p(x
(i)
0:tjy1:t)

to obtain (x
(i)
0:t;P

(i)
0:t).

(d) Output: The output is generated in the same manner as for the generic particle �lter.
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The optional MCMC step consists of the MH algorithm witch uses the EKF to generate

a proposal distribution, as follows.

EKF MH step

� Sample v from a uniform distribution: v � U[0;1].

� Compute the Jacobians F
?(i)
t & G

?(i)
t and H

?(i)
t & U

?(i)
t of the process and measurement

models.

� Update the states (particles) with the EKF:

�x
?(i)
tjt�1 = f(ex(i)t�1)

P
?(i)
tjt�1 = F

?(i)
t

ePt�1F
?T (i)
t +G

?(i)
t QtG

?T (i)
t

Kt = P
?(i)
tjt�1H

?T (i)
t [U

?(i)
t RtU

?T (i)
t +H

?(i)
t P

?(i)
tjt�1H

?T (i)
t ]�1

�x
?(i)
t = �x

?(i)
tjt�1 +Kt(yt � h(�x

?(i)
tjt�1))

P
?(i)
t = P

?(i)
tjt�1 �KtH

?(i)
t P

?(i)
tjt�1 (27)

� Sample the candidate x
?(i)
t � q(xtjex(i)0:t�1;y1:t) = N

�
�x
?(i)
t ;P

?(i)
t

�
� If v � min

�
1;

p(ytjx
?(i)
t )p(x

?(i)
t jex

(i)
t�1)q(extjex

(i)
0:t�1;y1:t)

p(ytjex
(i)
t )p(ex

(i)
t jex

(i)
t�1)q(x

?(i)
t jex

(i)
0:t�1;y1:t)

�
{ then accept move:

x
(i)
0:t =

�ex(i)0:t�1;x
?(i)
t

�
P

(i)
0:t =

�eP(i)

0:t�1;P
?(i)
t

�
{ else reject move:

x
(i)
0:t = ex(i)0:t

P
(i)
0:t = eP(i)

0:t

End If.

In the following section, we introduce one technique that should in general perform better

than rejection methods or extended Kalman �lter expansions.

7 The Uscented Particle Filter

As shown in Section 3, the unscented Kalman �lter (UKF) is able to more accurately

propagate the mean and covariance of the Gaussian approximation to the state distribution,

than the EKF. In comparison to the EKF, the UKF tends to generate more accurate
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estimates of the true covariance of the state. Distributions generated by the UKF generally

have a bigger support overlap with the true posterior distribution than the overlap achieved

by the EKF estimates. This is in part related to the fact that the UKF calculates the

posterior covariance accurately to the 3rd order, whereas the EKF relies on a �rst order

biased approximation. This makes the UKF a better candidate for more accurate proposal

distribution6 generation within the particle �lter framework. The UKF also has the ability

to scale the approximation errors in the higher order moments of the posterior distribution,

eg. kurtosis, etc., allowing for heavier tailed distributions. Because the sigma point set

used in the UKF is deterministically designed to capture certain characteristic of the prior

distribution, one can explicitly optimize the algorithm to work with distributions that have

heavier tails than Gaussian distributions, i.e. Cauchy or Student-t distributions. This

characteristic makes the UKF very attractive for the generation of proposal distributions.

The new �lter that results from using a UKF for proposal distribution generation within

a particle �lter framework is called the Unscented Particle Filter (UPF), and is the major

new contribution of this paper.

The pseudo-code of the UPF follows

Unscented Particle Filter

1. Initialization: t = 0

� For i = 1; : : : ; N; draw the states (particles) x
(i)
0 from the prior p(x0) and set,

�x
(i)
0 = E[x

(i)
0 ]

P
(i)
0 = E[(x

(i)
0 � �x

(i)
0 )(x

(i)
0 � �x

(i)
0 )T ]

�x
(i)a
0 = E[x(i)a] = [(�x

(i)
0 )T 0 0]T

P
(i)a
0 = E[(x

(i)a
0 � �x

(i)a
0 )(x

(i)a
0 � �x

(i)a
0 )T ] =

2
664
P

(i)
0 0 0

0 Q 0

0 0 R

3
775

Continued ...

.

6Like the EKF, the UKF also incorporates the latest observations, but this is done in a more accurate

way.
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2. For t = 1; 2; : : :

(a) Importance sampling step

� For i = 1; : : : ; N :

{ Update the particles with the UKF:

� Calculate sigma points:

X
(i)a
t�1 =

�
�x
(i)a
t�1 �x

(i)a
t�1 �

q
(na + �)P

(i)a
t�1

�

� Propagate particle into future (time update):

X
(i)x
tjt�1 = f

�
X

(i)x
t�1 ;X

(i)v
t�1

�
�x
(i)
tjt�1 =

2naX
j=0

W
(m)
j X

(i)x
j;tjt�1

P
(i)
tjt�1 =

2naX
j=0

W
(c)
j [X

(i)x
j;tjt�1 � �x

(i)
tjt�1][X

(i)x
j;tjt�1 � �x

(i)
tjt�1]

T

Y
(i)
tjt�1 = h

�
X

(i)x
tjt�1;X

(i)n
t�1

�
�y
(i)
tjt�1 =

2naX
j=0

W
(m)
j Y

(i)
j;tjt�1

� Incorporate new observation (measurement update):

P~yt~yt =

2naX
j=0

W
(c)
j [Y

(i)
j;tjt�1 � �y

(i)
tjt�1][Y

(i)
j;tjt�1 � �y

(i)
tjt�1]

T

Pxtyt
=

2naX
j=0

W
(c)
j [X

(i)
j;tjt�1 � �x

(i)
tjt�1][Y

(i)
j;tjt�1 � �y

(i)
tjt�1]

T

Kt = Pxtyt
P�1

~yt~yt
�x
(i)
t = �x

(i)
tjt�1 +Kt(yt � �y

(i)
tjt�1)bP(i)

t = P
(i)
tjt�1 �KtP~yt~ytK

T
t

{ Sample bx(i)t � q(x
(i)
t jx

(i)
0:t�1; ;y1:t) = N

�
�x
(i)
t ; bP(i)

t

�
{ Set bx(i)0:t ,

�
x
(i)
0:t�1; bx(i)t �

and bP(i)

0:t

�
P

(i)
0:t�1;

bP(i)
t

�
� For i = 1; : : : ; N , evaluate the importance weights up to a normalizing constant.

w
(i)
t /

p(ytjbx(i)t )p(bx(i)t jx
(i)
t�1)

q(bx(i)t jx
(i)
0:t�1;y1:t)

� For i = 1; : : : ; N , normalize the importance weights.

(b) Selection step

� Multiply/Suppress particles (bx(i)0:t;
bP(i)

0:t) with high/low importance weights ew(i)
t ,

respectively, to obtain N random particles (ex(i)0:t;
eP(i)

0:t).

(c) MCMC step (optional)

� Apply a Markov transition kernel with invariant distribution p(x
(i)
0:tjy1:t) to obtain

(x
(i)
0:t;P

(i)
0:t).

(d) Output: The output is generated in the same manner as for the generic particle �lter.
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8 Theoretical Convergence

Let B (Rn) be the space of bounded, Borel measurable functions on R
n . We denote kfk ,

sup
x2Rn

jf (x)j. The following theorem is a straightforward consequence of Theorem 1 in (Crisan

and Doucet 2000), which is an extension of previous results in (Crisan et al. 1999).

Theorem 1 If the importance weight

wt / p (ytjxt) p (xtjxt�1)

q (xtjx0:t�1;y1:t)
(28)

is upper bounded for any (xt�1;yt) and if one uses one of the selection schemes described

previously, then, for all t � 0, there exists ct independent of N such that for any ft 2
B
�
R
nx�(t+1)

�
E

24 1

N

NX
i=1

ft

�
x
(i)
0:t

�
�
Z

ft (x0:t) p (dx0:tjy1:t)
!2
35 � ct

kftk2
N

: (29)

The expectation in equation (29) is with respect to the randomness introduced by the

particle �ltering algorithm. This convergence result shows that, under very loose assump-

tions, convergence of the (unscented) particle �lter is ensured and that the convergence

rate of the method is independent of the dimension of the state-space. The only crucial

assumption is to ensure that wt is upper bounded, that is that the proposal distribution

q (xtjx0:t�1;y1:t) has heavier tails than p (ytjxt) p (xtjxt�1). Considering this theoretical

result, it should not be surprising that the UKF, which provides a better approximation

to the higher moments of the �ltering distribution than the EKF, yields better proposal

distributions than the EKF within the particle �ltering framework. In the following section,

we present a few experiments that con�rm this conjecture.

9 Experiments

We compared the performance of the Unscented Particle Filter to that of the other nonlin-

ear �lters on two estimation problems. The �rst problem is a synthetic, scalar estimation

problem and the second is a real world problem concerning the pricing of �nancial instru-

ments.

9.1 Synthetic Experiment

For this experiment, a time-series was generated by the following process model

xt+1 = 1 + sin(!�t) + �1xt + vt (30)
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where vt is a Gamma Ga(3; 2) random variable modeling the process noise, and ! = 4e� 2

and �1 = 0:5 are scalar parameters. A non-stationary observation model,

yt =

8<: �2x
2
t + nt t � 30

�3xt � 2 + nt t > 30
(31)

is used, with �2 = 0:2 and �3 = 0:5. The observation noise, nt, is drawn from a Gaussian

distribution N (0; 0:00001). Given only the noisy observations, yt, the di�erent �lters were

used to estimate the underlying clean state sequence xt for t = 1 : : : 60. The experiment

was repeated 100 times with random re-initialization for each run. All of the particle �lters

used 200 particles and residual resampling (see Section 4.4 for details on resampling). The

SUT parameters were set to � = 1, � = 0 and � = 2. These parameters are optimal for

the scalar case. Table 1 summarizes the performance of the di�erent �lters. The table

shows the means and variances of the mean-square-error (MSE) of the state estimates.

Figure 5 compares the estimates generated from a single run of the di�erent particle �lters.

The superior performance of the unscented particle �lter (UPF) is clearly evident. Figure

6 shows the estimates of the state covariance generated by a stand-alone EKF and UKF

for this problem. Notice how the EKF's estimates are consistently smaller than those

generated by the UKF. This property makes the UKF better suited than the EKF for

proposal distribution generation within the particle �lter framework.

Algorithm MSE

mean var

Extended Kalman Filter (EKF) 0.374 0.015

Unscented Kalman Filter (UKF) 0.280 0.012

Particle Filter : generic 0.424 0.053

Particle Filter : MCMC move step 0.417 0.055

Particle Filter : EKF proposal 0.310 0.016

Particle Filter : EKF proposal and MCMC move step 0.307 0.015

Particle Filter : UKF proposal (\Unscented Particle Filter") 0.070 0.006

Particle Filter : UKF proposal and MCMC move step 0.074 0.008

Table 1: State estimation experiment results. This plot shows the mean and variance of

the MSE calculated over 100 independent runs.
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Figure 5: Plot of estimates generated by the di�erent �lters on the synthetic state estimation

experiment.
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Figure 6: EKF and UKF estimates of the state covariance.

9.2 Pricing �nancial options

Derivatives are �nancial instruments whose value depends on some basic underlying cash

product, such as interest rates, equity indices, commodities, foreign exchange or bonds
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(Hull 1997). An option is a particular type of derivative that gives the holder the right

to do something. For example, a call option allows the holder to buy a cash product, at

a speci�ed date in the future, for a price determined in advance. The price at which the

option is exercised is known as the strike price, while the date at which the option lapses is

often referred to as the maturity time. Put options, on the other hand, allow the holder to

sell the underlying cash product.

The Black Scholes partial di�erential equation is, essentially, the main industry standard

for pricing options (Hull 1997). It relates the current value of an option (f) to the current

value of the underlying cash product (S), the volatility of the cash product (�) and the

risk-free interest rate (r) as follows

@f

@t
+ rS

@f

@S
+

1

2
�
2
S
2 @

2
f

@S2
= rf

This basic equation is only valid under several conditions, namely no risk-less arbitrage op-

portunities, an instantaneous risk-less portfolio, continuous trading, no dividends, constant

volatility and risk-free interest rate. In addition, the cash product is assumed to be dictated

by the following geometric Brownian motion model

dS

S
= �dt+ ��dt

where � is the expected return and � corresponds to a random sample from a standardized

normal distribution (with mean zero and unit variance). In their seminal work (Black and

Scholes 1973), Black and Scholes derived the following solutions for pricing European call

and put options

C = SNc(d1)�Xe
�rtmNc(d2) (32)

P = �SNc(�d1) +Xe
�rtmNc(�d2) (33)

where C denotes the price of a call option, P the price of a put option, X the strike price,

tm the time to maturity, Nc(:) is the cumulative normal distribution, and d1 and d2 are

given by

d1 =
ln(S=X) + (r + �

2
=2)tm

�
p
tm

d2 = d1 � �
p
tm

The volatility is usually estimated from a small moving window of data over the most

recent 50 to 180 days (Hull 1997). The risk-free interest rate is often estimated by monitoring

interest rates in the bond markets. In our approach, which follows from (Niranjan 1996),

we use the state-space representation to model the system given by equations (32) and (33).
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We treat r and � as the hidden states and C and P as the output observations. tm and S

are treated as known control signals (input observations). We believe that this approach is

better since it constitutes a more natural way of dealing with the sequential behavior and

non-stationarity of the data. In the end, we are able to compute daily complete probability

distributions for r and � and to decide whether the current value of an option in the market

is being either over-priced or under-priced.

Typically, options on a particular equity and with the same exercise date are traded

with several strike prices. For example, in our experiments, we used �ve pairs of call and

put option contracts on the British FTSE100 index (from February 1994 to December 1994)

to evaluate the pricing algorithms. For each option on this set one can estimate a di�erent

volatility. By plotting the Black-Scholes estimates of the volatilities against their respective

strike prices, we obtain a curve which is known as the volatility smile (Hull 1997). A well

known pricing strategy is to leave one of the options out and then determine the volatility

smile given by the other options. If the option that was left out is below the curve, it could

mean that it is under-priced by the market.
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Figure 7: Volatility smile indicating that an option on the FTSE-100 index was over-priced.

The option value 10 days later con�rmed this hypothesis. Estimates obtained with a particle

�lter [*], 4-th order polynomial �t [|] and hypothesized volatility [o].

35



Figure 7 shows an example of this phenomenon obtained by tracking 5 pairs of call and

put option contracts on the FTSE-100 index (1994) with a particle �lter. On the 50th

day, option 4 seems to be over-priced. The state of this option 10 days later con�rms this

hypothesis. However, depending on the state of the particular equity, some options might

remain under-priced or over-priced during their entire life-time. For example, if an option

on a company product seems to be over-priced according to its volatility smile, but investors

know that the company is being bought by a larger company with better management, the

option price will remain higher than the smile prediction (Haugen 1990).

In the sequential Monte Carlo framework, we can improve this trading strategy. Instead

of plotting a volatility smile, we plot a probability smile. That is, we can plot the probability

density function of each implied volatility against their respective strike prices, as shown in

Figure 8. This plot, clearly, conveys more information than a simple plot of the posterior

mean estimates.
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Figure 8: Probability smile for options on the FTSE-100 index (1994). Although the

volatility smile indicates that the option with strike price equal to 3225 is under-priced,

the shape of the probability gives us a warning against the hypothesis that the option is

under-priced. Posterior mean estimates obtained with Black-Scholes model and particle

�lter [*], 4-th order polynomial �t [|] and hypothesized volatility [o].

The type of predictions obtained with the Unscented Particle Filter were very close
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Figure 9: UPF one-step-ahead predictions on the call and put option's prices with con�dence

intervals (2 standard deviations).

to the measured data as evidenced by Figure 9. Figure 10 shows the estimated volatility

and interest rate for a contract with a strike price of 3225. Plots of the evolution of the

probability distributions of the interest rate and volatility are depicted in Figures 11 and

12.

In Table 2, we compare the one-step-ahead normalized square errors obtained with each

method on a pair of options with strike price 2925. The normalized square errors are de�ned

as follows

NSEC =

sX
t

(Ct � bCt)2

NSEP =

sX
t

(Pt � bPt)2

where bCt and bPt denotes the one-step-ahead predictions of the call and put prices. The

square errors were only measured over the last 100 days of trading, so as to allow the

algorithms to converge. The experiment was repeated 100 times and we used 100 particles

in each particle �lter. This table shows that, this time both the EKF and UKF led to
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Figure 10: Estimated interest rate and volatility.
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Figure 11: Probability distribution of the implied interest rate.
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Figure 12: Probability distribution of the implied volatility.

Option type Algorithm NSE

mean var

Trivial 0.078 0.000

Extended Kalman Filter (EKF) 0.037 0.000

Unscented Kalman Filter (UKF) 0.037 0.000

Call Particle Filter : generic 0.037 0.000

Particle Filter : EKF proposal 0.009 0.000

Unscented Particle Filter 0.009 0.000

Trivial 0.035 0.000

Extended Kalman Filter (EKF) 0.023 0.000

Unscented Kalman Filter (UKF) 0.023 0.000

Put Particle Filter : generic 0.023 0.000

Particle Filter : EKF proposal 0.007 0.000

Unscented Particle Filter 0.008 0.000

Table 2: One-step-ahead normalized square errors over 100 runs. The trivial prediction is

obtained by assuming that the price on the following day corresponds to the current price.
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the same improvement over standard particle �ltering. This is because in this particular

instance the process model is linear Gaussian and the nonlinearity of the measurement

model is not too severe. This, however, will not be the case in general. The important

thing is to notice that the UKF, used as a mechanism to generate the proposal distribution,

works well with a diÆcult real data set.

10 Conclusions

In this paper, we proposed a new particle �lter that uses the UKF to generate the proposal

distribution. When the process and measurement models are either highly nonlinear or

contain heavy tailed noise, the UKF produces proposal distributions that exhibit a larger

support overlap with the true posterior than the EKF proposal distributions, making it bet-

ter suited for proposal distribution generation. Since the UKF can also theoretically have

heavier tails than the EKF, while still incorporating the latest information before the evalu-

ation of the importance weights, the theory predicts that this �lter can perform very well in

situations where the likelihood is peaked or when one �nds outliers in the data. A synthetic

experiment and an experiment with real �nancial data showed that the unscented particle

�lter can perform better than other sequential estimation algorithms. We hope in the future

to extend the range of applications of the unscented particle �lter. Towards this purpose,

we have made the software freely available at http://www.cs.berkeley.edu/~jfgf and

http://varsha.ece.ogi.edu/~rvdmerwe.
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