
OO Integration Testing!

Chapter 18!

!

IOO–2!

 !

  What assumption is made for integration testing?!

IOO–3!

 !

  What assumption is made for integration testing?!
  Assume unit level testing is complete!

IOO–4!

 !

  What choices are there for unit testing?!

IOO–5!

 !

  What choices are there for unit testing?!
  For OO have two choices for unit!

IOO–6!

 !

  What choices are there for unit testing?!
  For OO have two choices for unit!

  What are they?!

IOO–7!

 !

  What choices are there for unit testing?!
  For OO have two choices for unit!

  Method is a unit!
  Class is a unit!

IOO–8!

 !

  What does integration testing entail!
  If method is a unit?!

  ???!

IOO–9!

 !

  What does integration testing entail!
  If method is a unit?!

  Need to integrate within the class!
  Why?!

IOO–10!

 !

  What does integration testing entail!
  If method is a unit?!

  Need to integrate within the class!
  Does occur with classes that have multiple

designers / implementers!

IOO–11!

 !

  What does integration testing entail!
  If method is a unit?!

  Need to integrate within the class!
  Does occur with classes that have multiple

designers / implementers!
  What else?!

IOO–12!

 !

  What does integration testing entail!
  If method is a unit?!

  Need to integrate within the class!
  Does occur with classes that have multiple

designers / implementers!
  Need to integrate classes!

IOO–13!

 !

  What does integration testing entail!
  If class is a unit?!

  ???!

IOO–14!

 !

  What does integration testing entail!
  If class is a unit?!

  Need to unflatten classes!

!

IOO–15!

 !

  What does integration testing entail!
  If class is a unit?!

  Need to unflatten classes!
  What else?!

IOO–16!

 !

  What does integration testing entail!
  If class is a unit?!

  Need to unflatten classes!
  Need to remove test methods!

  What else?!

!

IOO–17!

 !

  What does integration testing entail!
  If class is a unit?!

  Need to unflatten classes!
  Need to remove test methods!
  Need to integrate classes!

!

IOO–18!

 !

  What considerations are there with integration testing?!

!

IOO–19!

 !

  What considerations are there with integration testing?!
  Static considerations!

IOO–20!

 !

  What considerations are there with integration testing?!
  Static considerations!

  What else?!

IOO–21!

 !

  What considerations are there with integration testing?!
  Static considerations!
  Dynamic considerations!

IOO–22!

 !

  What information do we need for static considerations?!

IOO–23!

 !

  What information do we need for static considerations?!
  Class definitions!

IOO–24!

 !

  What information do we need for static considerations?!
  Class definitions!

  Where are they?!

IOO–25!

 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!

IOO–26!

 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!
  What else?!

IOO–27!

 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!
  Static model!

IOO–28!

 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!
  Static model!

  Consists of what?!

IOO–29!

 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!
  Static model!

  Inheritance and uses structure!

IOO–30!

 !

  What tests do we base on static considerations?!
  Address polymorphism statically!

!

IOO–31!

 !

  What tests do we base on static considerations?!
  Address polymorphism statically!

  What do we do?!

!

IOO–32!

 !

  What tests do we base on static considerations?!
  Address polymorphism statically!

  Select a test for each polymorphic context!

!

IOO–33!

 !

  What information do we need for dynamic
considerations?!
  Dynamic view is more challenging!

!

IOO–34!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

IOO–35!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Consists of what?!

IOO–36!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!

IOO–37!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  What else?!

IOO–38!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  Class communication – message passing!

IOO–39!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  Class communication – message passing!

  What else?!

IOO–40!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  Class communication – message passing!
  Use cases – scenarios!

  What else?!

IOO–41!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  Class communication – message passing!
  Use cases – scenarios!

  Statecharts – are not useful!

IOO–42!

 !

  How do we show class communications?!

IOO–43!

 !

  How do we show class communications?!
  Collaboration diagrams!

IOO–44!

 !

  How do we show class communications?!
  Collaboration diagrams!

  What else?!

IOO–45!

 !

  How do we show class communications?!
  Collaboration diagrams!
  Sequence diagrams!

IOO–46!

 !

  What are collaboration diagrams?!

IOO–47!

 !

  What are collaboration diagrams?!
  Annotated call graphs – Figure 18.1!

IOO–48!

 !

  What are collaboration diagrams?!
  Annotated call graphs – Figure 18.1!

  What types of integration do they support?!

IOO–49!

 !

  How do we show class communications?!
  Collaboration diagrams!

  Annotated call graph – Figure 18.1!
  Supports!

  pair wise integration strategy!
  neighbourhood integration strategy!

IOO–50!

 !

  What are sequence diagrams?!

IOO–51!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

IOO–52!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  What are the states?!

IOO–53!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  States!
  Classes – regular grain!
  Methods – fine grain!

!

IOO–54!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  States!
  Classes – regular grain!
  Methods – fine grain!

  What are the transitions?!

!

IOO–55!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  States!
  Classes – regular grain!
  Methods – fine grain!

  Transitions correspond to sending messages!
  What are they analogous to?!

IOO–56!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  States!
  Classes – regular grain!
  Methods – fine grain!

  Transitions correspond to sending messages!

  Close analogy with MM-paths!

IOO–57!

 !

  What types of integration strategies are there?!

IOO–58!

 !

  What types of integration strategies are there?!
  Pair-wise!

  Figure 13.6  
!

  Neighbourhood!
  Figure 13.7!

!

IOO–59!

 !

  What is the problem with pair-wise integration?!

IOO–60!

 !

  What is the problem with pair-wise integration?!
  Too much extra work with stubs and drivers!

IOO–61!

 !

  What is the problem with neighbourhood integration?!

IOO–62!

 !

  What is the problem with neighbourhood integration?!
  Some neighbourhoods may include most classes  
!

  Some neighbourhoods may be only two classes!

Figure 18.1!

IOO–63!

 !

  What is the problem with neighbourhood integration?!
  Some neighbourhoods may include most classes  
!

  Some neighbourhoods may be only two classes!

  What do we do?!

IOO–64!

 !

  What is the problem with neighbourhood integration?!
  Some neighbourhoods may include most classes!
  Some neighbourhoods may be only two classes!

  What do we do?!
  Get a better definition!

IOO–65!

 !

  What is a better definition than a neighbourhood?!

IOO–66!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!

IOO–67!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  What properties does an ultra-center have?!

IOO–68!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!
  Minimize maximum distance to other nodes!
  Neighbourhood grows from an ultra-center!
  Analogy with ripples from dropping an object into

water!

!

IOO–69!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!
  Minimize maximum distance to other nodes!
  Neighbourhood grows from an ultra-center!
  Analogy with ripples from dropping an object into

water!

  What are the advantages/disadvantages?!

IOO–70!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!
  Minimize maximum distance to other nodes!
  Neighbourhood grows from an ultra-center!
  Analogy with ripples from dropping an object into

water!

  What are the advantages/disadvantages?!
  Less stubs!
  Less diagnostic precision!

!

IOO–71!

 !

  What is an MM-path – a method to message path – in
OO?!

IOO–72!

 !

  What is an MM-path – a method to message path – in
OO?!
  A sequence of method executions linked by messages!

IOO–73!

 !

  What is an MM-path – a method to message path – in
OO?!
  A sequence of method executions linked by messages!

  How is an execution path constructed?!

IOO–74!

 !

  What is an MM-path – a method to message path – in
OO?!
  A sequence of method executions linked by messages!

  Start at any class by sending a message!
  End at message quiescence!
  End at return from original message!

IOO–75!

 !

  What is an MM-path – a method to message path – in
OO?!
  A sequence of method executions linked by messages!

  Start at any class by sending a message!
  End at message quiescence!

  What is this?!
  End at return from original message!

IOO–76!

 !

  What is an MM-path – a method to message path – in
OO?!
  A sequence of method executions linked by messages!

  Start at any class by sending a message!
  End at message quiescence!

  At class that does not send any messages!
  End at return from original message!

See Figures 18.3, 18.4, 18.5!

IOO–77!

 !

  What is the highest integration level?!

IOO–78!

 !

  What is the highest integration level?!
  Classes that implement an atomic system function!

IOO–79!

Atomic system functions!

  What is an atomic system function?!

IOO–80!

Atomic system functions!

  What is an atomic system function?!
  An MM-path!

  Stimulus / response pair of port-level events!

IOO–81!

Atomic system functions!

  What is an atomic system function?!
  An MM-path!

  Stimulus / response pair of port-level events!
  What does it begin and end with?!

IOO–82!

Atomic system functions!

  What is an atomic system function?!
  An MM-path!

  Stimulus / response pair of port-level events  
!

  Begins with an input port event!
  Event quiescence  
!

  Ends with an output port event!
  Event quiescence!

IOO–83!

Atomic system functions!

  What good are atomic system functions?!

IOO–84!

Atomic system functions!

  What good are atomic system functions?!
  Addresses event-driven nature of OO programs  
!

  At the boundary of integration and system testing!

IOO–85!

OO-calendar analysis!

  Why do we use directed graphs?!

IOO–86!

OO-calendar analysis!

  Why do we use directed graphs?!
  Directed graph makes it possible to be analytical in

choosing test cases!

IOO–87!

OO-calendar analysis!

  How many test cases are there?!

IOO–88!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

IOO–89!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test!

IOO–90!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
!

IOO–91!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  What are they?!
!

IOO–92!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine

testIt!

IOO–93!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine

testIt!
  What is the problem?!

IOO–94!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine

testIt 
!

  Depends upon choice of test cases, which could miss
leap year related cases!

IOO–95!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine

testIt 
!

  Depends upon choice of test cases, which could miss
leap year related cases!

  What do we need to do?!

IOO–96!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine

testIt 
!

  Depends upon choice of test cases, which could miss
leap year related cases!

  Need to cover every message!

IOO–97!

OO-calendar analysis!

  Depends upon choice of test cases, which could miss
leap year related cases!

  Need to cover every message  
!

  What is a good way to do this?!

IOO–98!

OO-calendar analysis!

  Depends upon choice of test cases, which could miss
leap year related cases!

  Need to cover every message!
  The test cases identified in decision table testing

(Table 7.16) would give a good integration test suite  
!

  Look for test cases to cover every message in  
Figure 18.3!

IOO–99!

 !

  Are MM-paths sufficient?!

IOO–100!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!

IOO–101!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!

  Why?!

IOO–102!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

IOO–103!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  From where does the complexity come?!

IOO–104!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  Come from inheritance!
  Come from stages of message passing!

IOO–105!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  Come from inheritance!
  Come from stages of message passing!

  What else?!

IOO–106!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  Come from inheritance!
  Come from stages of message passing!

  Program graphs are basis but are too simple!
  What do we need?!

IOO–107!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  Come from inheritance!
  Come from stages of message passing!

  Program graphs are basis but are too simple!
  Need event and message driven Petri nets !!

IOO–108!

Event & Message driven Petri nets (EMDPN)!

  P – set of port events 
! ! ! ! input output!

  D – set of data places!

  M – message send/return places!
  Output for sender!
  Input for receiver!

IOO–109!

EMDPN – 2!

  T – set of transitions!
  Represent a method execution path!

  In – set of edges to transitions!
  (P ∪ D ∪ M) ↔ T!

  It is a relation between places and transitions!
  If deterministic then it is a function from places to

transitions!

  Out – set of edges from transitions!
  T ↔ (P ∪ D ∪ M)!

IOO–110!

Message send/receive places!

  Capture notion of interobject messages!
  They are an sink of a method execution path in the

sending object!
  They are an source to a method execution path in the

receiving object!
  The return is an sink of a method execution path in the

receiving object!
  The return is an source to a method execution path in

the sending object!

See Figure 18.7!

IOO–111!

DU-paths!

  Define / use paths!
  Focus on connectivity!
  Ignore types of nodes!

IOO–112!

Inheritance-induced data flow!

  Begins with a data place  
!

  Ends with a data place  
!

  Data places alternate with isA transitions!
  isA transitions are degenerate execution paths!

  Implement inheritance!

See Figure 18.8!

IOO–113!

Message-induced data flow!

  Set of transitions!
  Start with defining transition!

  Variable is defined in the module execution path!
  End with use transition!

  Variable Is used in the module execution path !

  Can be definition clear or not definition clear!

See Figure 18.9!
&!

Section 18.3.3 for an example path!

IOO–114!

Slices!

  Useful if executable!
  Difficult to do in OO environment 
!

  Can be used for desk checking for fault location!

