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  What considerations are there with integration testing?!
  Static considerations!
  Dynamic considerations!
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 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!
  Static model!

  Inheritance and uses structure!
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  What tests do we base on static considerations?!
  Address polymorphism statically!

  Select a test for each polymorphic context!
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  What information do we need for dynamic 
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  Class communication – message passing!
  Use cases – scenarios!

  Statecharts  – are not useful!
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  How do we show class communications?!
  Collaboration diagrams!

  Annotated call graph – Figure 18.1!
  Supports!

  pair wise integration strategy!
  neighbourhood integration strategy!
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 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  States!
  Classes – regular grain!
  Methods – fine grain!

  Transitions correspond to sending messages!

  Close analogy with MM-paths!
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  What types of integration strategies are there?!
  Pair-wise!

  Figure 13.6  
!

  Neighbourhood!
  Figure 13.7!

!
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  What is the problem with pair-wise integration?!
  Too much extra work with stubs and drivers!
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 !

  What is the problem with neighbourhood integration?!
  Some neighbourhoods may include most classes  
!

  Some neighbourhoods may be only two classes!

Figure 18.1!
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  What is the problem with neighbourhood integration?!
  Some neighbourhoods may include most classes!
  Some neighbourhoods may be only two classes!

  What do we do?!
  Get a better definition!
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 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!
  Minimize maximum distance to other nodes!
  Neighbourhood grows from an ultra-center!
  Analogy with ripples from dropping an object into 

water!

  What are the advantages/disadvantages?!
  Less stubs!
  Less diagnostic precision!

!
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 !

  What is an MM-path – a method to message path – in 
OO?!
  A sequence of method executions linked by messages!

  Start at any class by sending a message!
  End at message quiescence!

  At class that does not send any messages!
  End at return from original message!

See Figures 18.3, 18.4, 18.5!
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  What is the highest integration level?!
  Classes that implement an atomic system function!
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Atomic system functions!

  What is an atomic system function?!
  An MM-path!

  Stimulus / response pair of port-level events  
!

  Begins with an input port event!
  Event quiescence  
!

  Ends with an output port event!
  Event quiescence!
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Atomic system functions!

  What good are atomic system functions?!
  Addresses event-driven nature of OO programs  
!

  At the boundary of integration and system testing!
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OO-calendar analysis!

  Why do we use directed graphs?!
  Directed graph makes it possible to be analytical in 

choosing test cases!
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  Depends upon choice of test cases, which could miss 
leap year related cases!
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OO-calendar analysis!

  Depends upon choice of test cases, which could miss 
leap year related cases!

  Need to cover every message!
  The test cases identified in decision table testing 

(Table 7.16) would give a good integration test suite  
!

  Look for test cases to cover every message in  
Figure 18.3!
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Data flow testing!
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Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  Come from inheritance!
  Come from stages of message passing!

  Program graphs are basis but are too simple!
  Need event and message driven Petri nets !!
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Event & Message driven Petri nets (EMDPN)!

  P – set of port events 
! ! ! !     input       output!

  D – set of data places!

  M – message send/return places!
  Output for sender!
  Input for receiver!
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EMDPN – 2!

  T – set of transitions!
  Represent a method execution path!

  In – set of edges to transitions!
  (P ∪ D ∪ M) ↔ T!

  It is a relation between places and transitions!
  If deterministic then it is a function from places to 

transitions!

  Out – set of edges from transitions!
  T ↔ (P ∪ D ∪ M)!
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Message send/receive places!

  Capture notion of interobject messages!
  They are an sink of a method execution path in the 

sending object!
  They are an source to a method execution path in the 

receiving object!
  The return is an sink of a method execution path in the 

receiving object!
  The return is an source to a method execution path in 

the sending object!

See Figure 18.7!
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DU-paths!

  Define / use paths!
  Focus on connectivity!
  Ignore types of nodes!
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Inheritance-induced data flow!

  Begins with a data place  
!

  Ends with a data place  
!

  Data places alternate with isA transitions!
  isA transitions are degenerate execution paths!

  Implement inheritance!

See Figure 18.8!
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Message-induced data flow!

  Set of transitions!
  Start with defining transition!

  Variable is defined in the module execution path!
  End with use transition!

  Variable Is used in the module execution path !

  Can be definition clear or not definition clear!

See Figure 18.9!
&!

Section 18.3.3 for an example path!
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Slices!

  Useful if executable!
  Difficult to do in OO environment 
!

  Can be used for desk checking for fault location!


