
OO Integration Testing!

Chapter 18!

!



IOO–2!

 !

  What assumption is made for integration testing?!



IOO–3!

 !

  What assumption is made for integration testing?!
  Assume unit level testing is complete!
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  What choices are there for unit testing?!
  For OO have two choices for unit!

  Method is a unit!
  Class is a unit!
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  What does integration testing entail!
  If class is a unit?!

  Need to unflatten classes!
  Need to remove test methods!
  Need to integrate classes!
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  What considerations are there with integration testing?!
  Static considerations!
  Dynamic considerations!
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  What information do we need for static considerations?!
  Class definitions!

  Program text!
  Static model!

  Inheritance and uses structure!
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  What tests do we base on static considerations?!
  Address polymorphism statically!

  Select a test for each polymorphic context!

!
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  What information do we need for dynamic 
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  Class communication – message passing!
  Use cases – scenarios!

  Statecharts  – are not useful!
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  How do we show class communications?!
  Collaboration diagrams!
  Sequence diagrams!
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  How do we show class communications?!
  Collaboration diagrams!

  Annotated call graph – Figure 18.1!
  Supports!

  pair wise integration strategy!
  neighbourhood integration strategy!
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  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  States!
  Classes – regular grain!
  Methods – fine grain!

  Transitions correspond to sending messages!

  Close analogy with MM-paths!
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  What types of integration strategies are there?!
  Pair-wise!

  Figure 13.6  
!

  Neighbourhood!
  Figure 13.7!

!
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  What is the problem with pair-wise integration?!
  Too much extra work with stubs and drivers!
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  What is the problem with neighbourhood integration?!
  Some neighbourhoods may include most classes  
!

  Some neighbourhoods may be only two classes!

Figure 18.1!
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  What is the problem with neighbourhood integration?!
  Some neighbourhoods may include most classes!
  Some neighbourhoods may be only two classes!

  What do we do?!
  Get a better definition!



IOO–65!

 !

  What is a better definition than a neighbourhood?!



IOO–66!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!



IOO–67!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  What properties does an ultra-center have?!



IOO–68!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!
  Minimize maximum distance to other nodes!
  Neighbourhood grows from an ultra-center!
  Analogy with ripples from dropping an object into 

water!

!



IOO–69!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!
  Minimize maximum distance to other nodes!
  Neighbourhood grows from an ultra-center!
  Analogy with ripples from dropping an object into 

water!

  What are the advantages/disadvantages?!



IOO–70!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!
  Minimize maximum distance to other nodes!
  Neighbourhood grows from an ultra-center!
  Analogy with ripples from dropping an object into 

water!

  What are the advantages/disadvantages?!
  Less stubs!
  Less diagnostic precision!

!
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  What is an MM-path – a method to message path – in 
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  A sequence of method executions linked by messages!

  How is an execution path constructed?!
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  What is an MM-path – a method to message path – in 
OO?!
  A sequence of method executions linked by messages!

  Start at any class by sending a message!
  End at message quiescence!

  At class that does not send any messages!
  End at return from original message!

See Figures 18.3, 18.4, 18.5!
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  What is the highest integration level?!
  Classes that implement an atomic system function!
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  What is an atomic system function?!
  An MM-path!

  Stimulus / response pair of port-level events!
  What does it begin and end with?!
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Atomic system functions!

  What is an atomic system function?!
  An MM-path!

  Stimulus / response pair of port-level events  
!

  Begins with an input port event!
  Event quiescence  
!

  Ends with an output port event!
  Event quiescence!
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Atomic system functions!

  What good are atomic system functions?!
  Addresses event-driven nature of OO programs  
!

  At the boundary of integration and system testing!
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OO-calendar analysis!

  Why do we use directed graphs?!
  Directed graph makes it possible to be analytical in 

choosing test cases!
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  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine 

testIt!
  What is the problem?!
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OO-calendar analysis!

  Depends upon choice of test cases, which could miss 
leap year related cases!

  Need to cover every message  
!

  What is a good way to do this?!
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OO-calendar analysis!

  Depends upon choice of test cases, which could miss 
leap year related cases!

  Need to cover every message!
  The test cases identified in decision table testing 

(Table 7.16) would give a good integration test suite  
!

  Look for test cases to cover every message in  
Figure 18.3!
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Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!

  Why?!
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Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  Come from inheritance!
  Come from stages of message passing!

  Program graphs are basis but are too simple!
  Need event and message driven Petri nets !!
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Event & Message driven Petri nets (EMDPN)!

  P – set of port events 
! ! ! !     input       output!

  D – set of data places!

  M – message send/return places!
  Output for sender!
  Input for receiver!
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EMDPN – 2!

  T – set of transitions!
  Represent a method execution path!

  In – set of edges to transitions!
  (P ∪ D ∪ M) ↔ T!

  It is a relation between places and transitions!
  If deterministic then it is a function from places to 

transitions!

  Out – set of edges from transitions!
  T ↔ (P ∪ D ∪ M)!
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Message send/receive places!

  Capture notion of interobject messages!
  They are an sink of a method execution path in the 

sending object!
  They are an source to a method execution path in the 

receiving object!
  The return is an sink of a method execution path in the 

receiving object!
  The return is an source to a method execution path in 

the sending object!

See Figure 18.7!
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DU-paths!

  Define / use paths!
  Focus on connectivity!
  Ignore types of nodes!
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Inheritance-induced data flow!

  Begins with a data place  
!

  Ends with a data place  
!

  Data places alternate with isA transitions!
  isA transitions are degenerate execution paths!

  Implement inheritance!

See Figure 18.8!
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Message-induced data flow!

  Set of transitions!
  Start with defining transition!

  Variable is defined in the module execution path!
  End with use transition!

  Variable Is used in the module execution path !

  Can be definition clear or not definition clear!

See Figure 18.9!
&!

Section 18.3.3 for an example path!
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Slices!

  Useful if executable!
  Difficult to do in OO environment 
!

  Can be used for desk checking for fault location!


