
OO Integration Testing!

Chapter 18!

!

IOO–2!

 !

  What assumption is made for integration testing?!

IOO–3!

 !

  What assumption is made for integration testing?!
  Assume unit level testing is complete!

IOO–4!

 !

  What choices are there for unit testing?!

IOO–5!

 !

  What choices are there for unit testing?!
  For OO have two choices for unit!

IOO–6!

 !

  What choices are there for unit testing?!
  For OO have two choices for unit!

  What are they?!

IOO–7!

 !

  What choices are there for unit testing?!
  For OO have two choices for unit!

  Method is a unit!
  Class is a unit!

IOO–8!

 !

  What does integration testing entail!
  If method is a unit?!

  ???!

IOO–9!

 !

  What does integration testing entail!
  If method is a unit?!

  Need to integrate within the class!
  Why?!

IOO–10!

 !

  What does integration testing entail!
  If method is a unit?!

  Need to integrate within the class!
  Does occur with classes that have multiple

designers / implementers!

IOO–11!

 !

  What does integration testing entail!
  If method is a unit?!

  Need to integrate within the class!
  Does occur with classes that have multiple

designers / implementers!
  What else?!

IOO–12!

 !

  What does integration testing entail!
  If method is a unit?!

  Need to integrate within the class!
  Does occur with classes that have multiple

designers / implementers!
  Need to integrate classes!

IOO–13!

 !

  What does integration testing entail!
  If class is a unit?!

  ???!

IOO–14!

 !

  What does integration testing entail!
  If class is a unit?!

  Need to unflatten classes!

!

IOO–15!

 !

  What does integration testing entail!
  If class is a unit?!

  Need to unflatten classes!
  What else?!

IOO–16!

 !

  What does integration testing entail!
  If class is a unit?!

  Need to unflatten classes!
  Need to remove test methods!

  What else?!

!

IOO–17!

 !

  What does integration testing entail!
  If class is a unit?!

  Need to unflatten classes!
  Need to remove test methods!
  Need to integrate classes!

!

IOO–18!

 !

  What considerations are there with integration testing?!

!

IOO–19!

 !

  What considerations are there with integration testing?!
  Static considerations!

IOO–20!

 !

  What considerations are there with integration testing?!
  Static considerations!

  What else?!

IOO–21!

 !

  What considerations are there with integration testing?!
  Static considerations!
  Dynamic considerations!

IOO–22!

 !

  What information do we need for static considerations?!

IOO–23!

 !

  What information do we need for static considerations?!
  Class definitions!

IOO–24!

 !

  What information do we need for static considerations?!
  Class definitions!

  Where are they?!

IOO–25!

 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!

IOO–26!

 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!
  What else?!

IOO–27!

 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!
  Static model!

IOO–28!

 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!
  Static model!

  Consists of what?!

IOO–29!

 !

  What information do we need for static considerations?!
  Class definitions!

  Program text!
  Static model!

  Inheritance and uses structure!

IOO–30!

 !

  What tests do we base on static considerations?!
  Address polymorphism statically!

!

IOO–31!

 !

  What tests do we base on static considerations?!
  Address polymorphism statically!

  What do we do?!

!

IOO–32!

 !

  What tests do we base on static considerations?!
  Address polymorphism statically!

  Select a test for each polymorphic context!

!

IOO–33!

 !

  What information do we need for dynamic
considerations?!
  Dynamic view is more challenging!

!

IOO–34!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

IOO–35!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Consists of what?!

IOO–36!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!

IOO–37!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  What else?!

IOO–38!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  Class communication – message passing!

IOO–39!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  Class communication – message passing!

  What else?!

IOO–40!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  Class communication – message passing!
  Use cases – scenarios!

  What else?!

IOO–41!

 !

  What information do we need for dynamic
considerations?!
  Dynamic model!

  Finite state machines – Petri nets!
  Class communication – message passing!
  Use cases – scenarios!

  Statecharts – are not useful!

IOO–42!

 !

  How do we show class communications?!

IOO–43!

 !

  How do we show class communications?!
  Collaboration diagrams!

IOO–44!

 !

  How do we show class communications?!
  Collaboration diagrams!

  What else?!

IOO–45!

 !

  How do we show class communications?!
  Collaboration diagrams!
  Sequence diagrams!

IOO–46!

 !

  What are collaboration diagrams?!

IOO–47!

 !

  What are collaboration diagrams?!
  Annotated call graphs – Figure 18.1!

IOO–48!

 !

  What are collaboration diagrams?!
  Annotated call graphs – Figure 18.1!

  What types of integration do they support?!

IOO–49!

 !

  How do we show class communications?!
  Collaboration diagrams!

  Annotated call graph – Figure 18.1!
  Supports!

  pair wise integration strategy!
  neighbourhood integration strategy!

IOO–50!

 !

  What are sequence diagrams?!

IOO–51!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

IOO–52!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  What are the states?!

IOO–53!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  States!
  Classes – regular grain!
  Methods – fine grain!

!

IOO–54!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  States!
  Classes – regular grain!
  Methods – fine grain!

  What are the transitions?!

!

IOO–55!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  States!
  Classes – regular grain!
  Methods – fine grain!

  Transitions correspond to sending messages!
  What are they analogous to?!

IOO–56!

 !

  What are sequence diagrams?!
  Finite state machines with time axis – Figure 18.2!

  States!
  Classes – regular grain!
  Methods – fine grain!

  Transitions correspond to sending messages!

  Close analogy with MM-paths!

IOO–57!

 !

  What types of integration strategies are there?!

IOO–58!

 !

  What types of integration strategies are there?!
  Pair-wise!

  Figure 13.6  
!

  Neighbourhood!
  Figure 13.7!

!

IOO–59!

 !

  What is the problem with pair-wise integration?!

IOO–60!

 !

  What is the problem with pair-wise integration?!
  Too much extra work with stubs and drivers!

IOO–61!

 !

  What is the problem with neighbourhood integration?!

IOO–62!

 !

  What is the problem with neighbourhood integration?!
  Some neighbourhoods may include most classes  
!

  Some neighbourhoods may be only two classes!

Figure 18.1!

IOO–63!

 !

  What is the problem with neighbourhood integration?!
  Some neighbourhoods may include most classes  
!

  Some neighbourhoods may be only two classes!

  What do we do?!

IOO–64!

 !

  What is the problem with neighbourhood integration?!
  Some neighbourhoods may include most classes!
  Some neighbourhoods may be only two classes!

  What do we do?!
  Get a better definition!

IOO–65!

 !

  What is a better definition than a neighbourhood?!

IOO–66!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!

IOO–67!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  What properties does an ultra-center have?!

IOO–68!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!
  Minimize maximum distance to other nodes!
  Neighbourhood grows from an ultra-center!
  Analogy with ripples from dropping an object into

water!

!

IOO–69!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!
  Minimize maximum distance to other nodes!
  Neighbourhood grows from an ultra-center!
  Analogy with ripples from dropping an object into

water!

  What are the advantages/disadvantages?!

IOO–70!

 !

  What is a better definition than a neighbourhood?!
  Centers of a graph!

  Ultra-center!
  Minimize maximum distance to other nodes!
  Neighbourhood grows from an ultra-center!
  Analogy with ripples from dropping an object into

water!

  What are the advantages/disadvantages?!
  Less stubs!
  Less diagnostic precision!

!

IOO–71!

 !

  What is an MM-path – a method to message path – in
OO?!

IOO–72!

 !

  What is an MM-path – a method to message path – in
OO?!
  A sequence of method executions linked by messages!

IOO–73!

 !

  What is an MM-path – a method to message path – in
OO?!
  A sequence of method executions linked by messages!

  How is an execution path constructed?!

IOO–74!

 !

  What is an MM-path – a method to message path – in
OO?!
  A sequence of method executions linked by messages!

  Start at any class by sending a message!
  End at message quiescence!
  End at return from original message!

IOO–75!

 !

  What is an MM-path – a method to message path – in
OO?!
  A sequence of method executions linked by messages!

  Start at any class by sending a message!
  End at message quiescence!

  What is this?!
  End at return from original message!

IOO–76!

 !

  What is an MM-path – a method to message path – in
OO?!
  A sequence of method executions linked by messages!

  Start at any class by sending a message!
  End at message quiescence!

  At class that does not send any messages!
  End at return from original message!

See Figures 18.3, 18.4, 18.5!

IOO–77!

 !

  What is the highest integration level?!

IOO–78!

 !

  What is the highest integration level?!
  Classes that implement an atomic system function!

IOO–79!

Atomic system functions!

  What is an atomic system function?!

IOO–80!

Atomic system functions!

  What is an atomic system function?!
  An MM-path!

  Stimulus / response pair of port-level events!

IOO–81!

Atomic system functions!

  What is an atomic system function?!
  An MM-path!

  Stimulus / response pair of port-level events!
  What does it begin and end with?!

IOO–82!

Atomic system functions!

  What is an atomic system function?!
  An MM-path!

  Stimulus / response pair of port-level events  
!

  Begins with an input port event!
  Event quiescence  
!

  Ends with an output port event!
  Event quiescence!

IOO–83!

Atomic system functions!

  What good are atomic system functions?!

IOO–84!

Atomic system functions!

  What good are atomic system functions?!
  Addresses event-driven nature of OO programs  
!

  At the boundary of integration and system testing!

IOO–85!

OO-calendar analysis!

  Why do we use directed graphs?!

IOO–86!

OO-calendar analysis!

  Why do we use directed graphs?!
  Directed graph makes it possible to be analytical in

choosing test cases!

IOO–87!

OO-calendar analysis!

  How many test cases are there?!

IOO–88!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

IOO–89!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test!

IOO–90!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
!

IOO–91!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  What are they?!
!

IOO–92!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine

testIt!

IOO–93!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine

testIt!
  What is the problem?!

IOO–94!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine

testIt 
!

  Depends upon choice of test cases, which could miss
leap year related cases!

IOO–95!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine

testIt 
!

  Depends upon choice of test cases, which could miss
leap year related cases!

  What do we need to do?!

IOO–96!

OO-calendar analysis!

  How many test cases are there?!
  Cyclomatic complexity is 23!

  Implies 23 basis paths to test 
!

  Lower bound could be 3 test cases!
  Start at each of the three statements in routine

testIt 
!

  Depends upon choice of test cases, which could miss
leap year related cases!

  Need to cover every message!

IOO–97!

OO-calendar analysis!

  Depends upon choice of test cases, which could miss
leap year related cases!

  Need to cover every message  
!

  What is a good way to do this?!

IOO–98!

OO-calendar analysis!

  Depends upon choice of test cases, which could miss
leap year related cases!

  Need to cover every message!
  The test cases identified in decision table testing

(Table 7.16) would give a good integration test suite  
!

  Look for test cases to cover every message in  
Figure 18.3!

IOO–99!

 !

  Are MM-paths sufficient?!

IOO–100!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!

IOO–101!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!

  Why?!

IOO–102!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

IOO–103!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  From where does the complexity come?!

IOO–104!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  Come from inheritance!
  Come from stages of message passing!

IOO–105!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  Come from inheritance!
  Come from stages of message passing!

  What else?!

IOO–106!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  Come from inheritance!
  Come from stages of message passing!

  Program graphs are basis but are too simple!
  What do we need?!

IOO–107!

Data flow testing!

  Are MM-paths sufficient?!
  Like DD-paths, they are insufficient!
  Data values add complexity!

  Come from inheritance!
  Come from stages of message passing!

  Program graphs are basis but are too simple!
  Need event and message driven Petri nets !!

IOO–108!

Event & Message driven Petri nets (EMDPN)!

  P – set of port events 
! ! ! ! input output!

  D – set of data places!

  M – message send/return places!
  Output for sender!
  Input for receiver!

IOO–109!

EMDPN – 2!

  T – set of transitions!
  Represent a method execution path!

  In – set of edges to transitions!
  (P ∪ D ∪ M) ↔ T!

  It is a relation between places and transitions!
  If deterministic then it is a function from places to

transitions!

  Out – set of edges from transitions!
  T ↔ (P ∪ D ∪ M)!

IOO–110!

Message send/receive places!

  Capture notion of interobject messages!
  They are an sink of a method execution path in the

sending object!
  They are an source to a method execution path in the

receiving object!
  The return is an sink of a method execution path in the

receiving object!
  The return is an source to a method execution path in

the sending object!

See Figure 18.7!

IOO–111!

DU-paths!

  Define / use paths!
  Focus on connectivity!
  Ignore types of nodes!

IOO–112!

Inheritance-induced data flow!

  Begins with a data place  
!

  Ends with a data place  
!

  Data places alternate with isA transitions!
  isA transitions are degenerate execution paths!

  Implement inheritance!

See Figure 18.8!

IOO–113!

Message-induced data flow!

  Set of transitions!
  Start with defining transition!

  Variable is defined in the module execution path!
  End with use transition!

  Variable Is used in the module execution path !

  Can be definition clear or not definition clear!

See Figure 18.9!
&!

Section 18.3.3 for an example path!

IOO–114!

Slices!

  Useful if executable!
  Difficult to do in OO environment 
!

  Can be used for desk checking for fault location!

