
Issues in OO Testing!

Chapter 16!

!



ISS–2!

OO context!

  OO based on hope that objects could be reused without!
  Modification!
  Additional testing!

  Based on notion that objects encapsulate functions 
and data that belong together!

  Consensus now is that such optimism is unwarranted!
  OO programs has more severe testing problems than 

traditional programs!



ISS–3!

OO context – 2!

  Looking to other models that can be combined with OO 
to ameliorate the problems!
  Aspect-oriented programs!

  Aspect-orientation can be combined with any 
programming language!



ISS–4!

Problems to address!

  Levels of testing!
  What is a unit?!

  Implications of composition strategy of OO!
  Compare to functional decomposition!
  OO programs!

  Inheritance, encapsulation and polymorphism!
  How can traditional testing be extended?!



ISS–5!

OO unit!

  Two definitions!
  A unit is the smallest program component that can be 

compiled and executed!

  A unit is a program component that would be 
developed by one person!

  Could be a sub-part of one class!



ISS–6!

Unit is 1-person development!

  Traditional testing works well  
!

  Shifts much of the burden of testing to the integration 
level  
!

  Does not take encapsulation into account!
  Know about themselves!
  Operate on their own!



ISS–7!

Unit is compilable & executable!

  Can describe behaviour!
  Model with FSM – Statechart!
  Very useful for identifying test cases!

  Integration testing is easier!
  Integrate by combining already tested classes!
  Similar to traditional testing!



ISS–8!

Composition & Encapsulation!

  A class may be combined with other unknown classes!
  Goal of reuse!
  Need high cohesion, low coupling!

  Need very good unit testing!

  Reality is that burden of testing is still on integration 
testing!



ISS–9!

SWW– SSD  1!

All communication channels are  
data stream!
!
Channel P is a rough merge of the  
data streams from Lever and Dial!

Low coupling 
between Wiper  
Lever and Dial!

System Specification Diagram !



ISS–10!

SWW– SSD  2!

Channel DL is a  
statevector read 
of Dial by Lever!

High coupling  
between Lever and Dial!
!
When does Lever read DL?!



ISS–11!

SWW – SSD 3!

High coupling between 
Wiper and Lever  
Wiper and Dial!

When does Wiper read 
LW and DW? !



ISS–12!

Complication of inheritance!

  Unit is more difficult to define when inheritance is 
involved!
  Suggestion is to use the flat definition!

  Becomes complicated with multiple inheritance!

  Flattening solves inheritance problem!
  Flattened classes are not a part of the system!

  Cannot be certain they are properly tested!



ISS–13!

Complication of inheritance – 2!

  May not have necessary methods for testing!
  Can add test methods!

  Should they be a part of the delivered system?!
  Analogous to having instrumented program text!

  Test methods need to be tested !!! …!

See Figures 16.2 & 16.3!



ISS–14!

Complication of polymorphism!

  Testing with different objects!
  Redundant tests on inherited methods!

  Lose hoped for economies!

  Similarly testing polymorphism introduces redundant 
testing!



ISS–15!

Levels of testing – Methods are units!

  Four levels!
  Method!

  Unit testing 
!

  Class!
  Intraclass integration testing 

!

  Integration!
  Interclass integration testing 

!

  System!
  At port level – same as traditional testing!



ISS–16!

Levels of testing – Classes are units!

  Three levels!
  Class!

  Unit testing!

  Integration!
  Interclass testing!

  System!
  At port level!



ISS–17!

Dataflow testing!

  Need analogue to dataflow testing of units in traditional 
programs 
!
  Use a revised Petri net definition to handle method 

calls between classes  
!

  See Chapter 18, OO-integration testing!


