

Generating test cases for complex behaviour

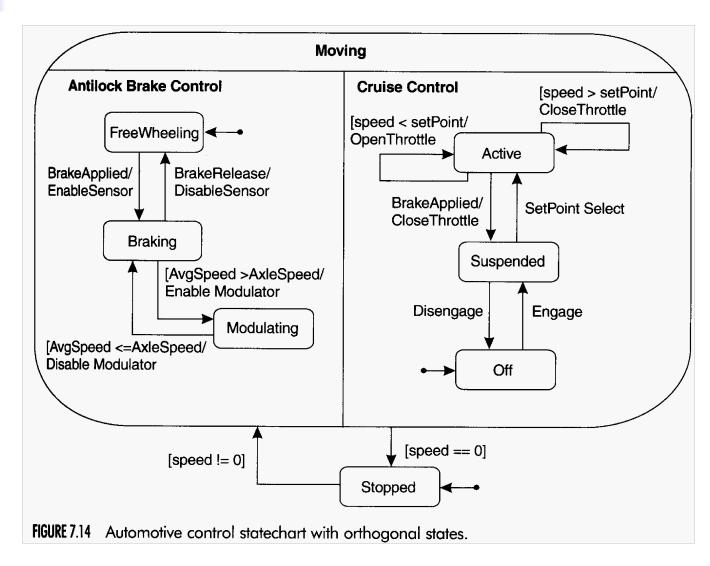
Reference: Robert V. Binder

Testing Object-Oriented Systems: Models, Patterns, and Tools

Addison-Wesley, 2000, Chapter 7

Flattening the statechart

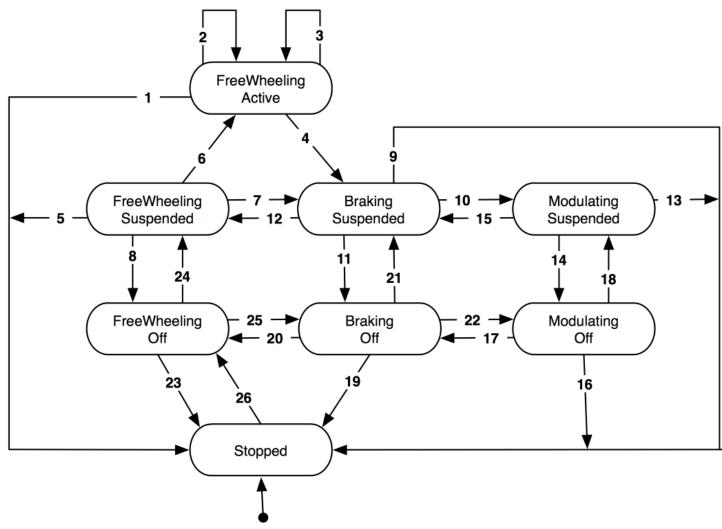
- Statecharts are great for communication, reducing clutter etc.
- They might hide subtle bugs
 - e.g. entering a sub-state rather than a super-state



Flattening the statechart – 2

- For testing we need to expand them to full transition diagrams
 - Expansion makes implicit transitions explicit, so they are not lost
 - Expansion is a flat view
 - Includes everything from inheritance in OO and sub-states in statecharts
- An automatable process

Concurrent statechart



Concurrency Hides Problems

- Concurrency hides implicit state combinations
 - Hides potential serious defects
 - Arise from implicit state combinations
- Explicit violations of implicit prohibitions should be tested

Expanding the Example

Expanding the Example – 2

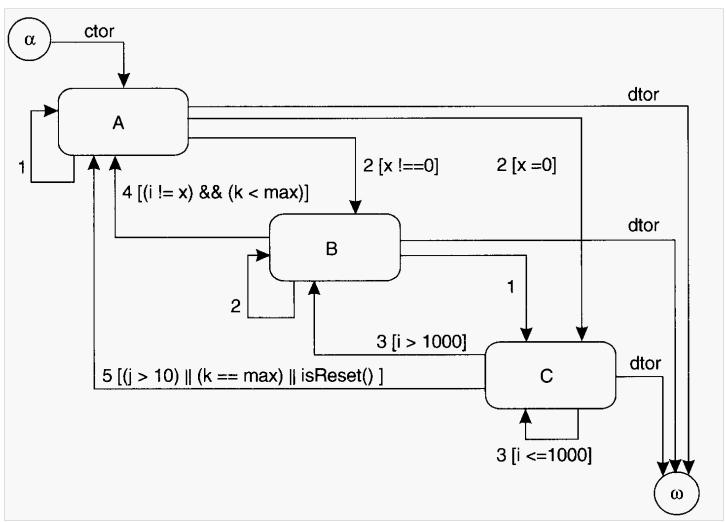
Events, guards and output for the automotive control FSM

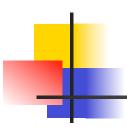
- 1 speed = 0
- 2 [speed ≥ setPoint] / CloseThrottle
- 3 [speed < setPoint] / OpenThrottle
- 4 BrakeApplied / CloseThrottle / EnableSensor
- 5 speed = 0
- 6 SetPoint Select
- 7 BrakeApplied / EnableSensor
- 8 Disengage
- 9 speed = 0
- 10 [AvgSpeed > AxleSpeed] / EnableModulator
- 11 Disengage
- 12 BrakeRelese / DisableSensor
- 13 speed = 0
- 14 Disengage
- 15 [AvgSpeed ≤ AxleSpeed] / DisableModulator

- 16 speed = 0
- 17 [AvgSpeed ≤ AxleSpeed] / DisableModulator
- 18 Engage
- 19 speed = 0
- 20 BrakeRelease / DisableSensor
- 21 Engage
- 22 [AvgSpeed > AxleSpeed] / EnableModulator
- 23 speed = 0
- 24 Engage
- 25 BrakeApplied / EnableSensor
- 26 speed ≠ 0

Unspecified Event/State Pairs

- State machine models will not include all events for all states
- Implicit transitions may be
 - Illegal
 - Ignored
 - Or a specification omission




Unspecified Event/State Pairs – 2

- Accepted illegal events lead to bugs called sneak paths
- For testing purposes, we cannot ignore implicit behaviour
 - Develop a Response Matrix

Example statechart

Response matrix

			Accepting State/Expected Response						
	Events and (Guards		α	A	B		C	
ctor				1	6	6	6	6	6
Event 1					1	1		2	6
Event 2	x == 0								
	DC			\geq	><	✓		2	6
	F			$\geq <$	1	\geq		\geq	\boxtimes
	Т			\geq	1	\geq		\geq	\times
Event 3	i <= 1000	Carlot Maria (Maria) (Maria) Maria (Maria) (Maria) (Maria) (Maria) Maria (Maria)							
	DC			$\geq \leq$	2	2		\geq	6
	Off			\geq	2	2		1	\boxtimes
	On		AND LITTLE STATE COME TO AND	\geq	2	2		1	\boxtimes
Event 4	i != x	k < max							
	DC	DC		$\geq \leq$	2	$\geq \leq$		2	6
	F	F		$\geq \leq$	$\geq \leq$	1		\geq	\times
	F	Т		$\geq \leq$	$\geq <$	2		\geq	\boxtimes
	T	F		$\geq \leq$	$\geq \leq$	2		\geq	\boxtimes
	Т	Т		$\geq \leq$	$\geq \leq$	1		\geq	\geq
Event 5	i > 10	k == max	isReset()						
	DC	DC	DC	$\geq \leq$	2	5		\geq	6
	F	F	F	$\geq \leq$	$\geq \leq$	$\geq \leq$	• • •	5	\geq
	F	F	Т	$\geq \leq$	$\geq \leq$	\geq		1	\geq
	F	T	F	$\geq \leq$	$\geq \leq$	$\geq \leq$	• • •	1	\geq
	F	Т	Т	$\geq \leq$	$\geq \leq$	$\geq <$	• • •	1	$>\!\!<$
	Т	F	F	$\geq <$	><	\geq		1	\times
	Т	F	Т	$\geq <$	$\geq <$	\geq		1	\times
	Т	Т	F	$\geq \leq$	> <	$\geq <$		1	\times
·	Т	Т	Т	$\geq \leq$	$\geq \leq$			1	\times
dtor	ing a said Palgo of Sul Said Sul			><	1	1		1	2

Key: T = true, F = false, DC = don't care; for Action codes, see Table 7.3

■ Not applicable Excluded Explicitly specified transition

Possible responses to illegal events

TABLE 7.3 Response Codes for Illegal Events

Response Code	Name	Response
oposonie foro	Accept	Perform the explicitly specified transition
woke an abnor	Queue	Place the illegal event in a queue for subsequent evaluation and ignore
d but results a 2	Ignore	No action or state change is to be produced, no error is returned, no exception raised
3	Flag	Return a nonzero error code
4	Reject	Raise an IllegalEventException
5	Mute	Disable the source of the event and ignore
6	Abend	Invoke abnormal termination services (e.g., core dump) and halt the process

Designing responses to illegal events

- Abstract state should not change
 - Concrete state may change due to exception handling
- Illegal event design question
 - Handle with defensive programming
 - Uncooperative (defensive) systems
 - Handle with precondition contracts
 - Cooperative systems

Designing responses to illegal events – 2

- Possible responses
 - Raise exception
 - Treat message as a noop
 - Attempt error recovery
 - Invoke abnormal termination
- Tester needs to decide expected responses so actual responses can be evaluated

State model validation

- Before it is used to generate test cases a state model must be
 - Complete
 - Consistent
 - Correct
 - Passes checklists

Checklist questions

What is a checklist?

Why do we use checklists?

What checklists would be useful for statecharts?

Validation checklists

- We will look at five validation checklists
 - Structure checklist
 - State name checklist
 - Guarded transition checklist
 - Robustness checklist
 - Well-formed subclass behaviour checklist

Structure checklist question

What would you look for to verify the structure of a statechart is correct?

Structure checklist

- There is an initial state with only outbound transitions
- There is a final state with only inbound transitions
 - If not, explicit reason is needed
- Except for the initial and final states, every state has at least one incoming and one outgoing transition

Structure checklist – 2

- Every state is reachable from the initial state
- The final state is reachable from all states
- No equivalent states

Structure checklist - 3

- Every defined event and every defined action appears in at least one transition
- The events accepted in a particular state are
 - Unique
 - Or differentiated by mutually exclusive guards
- Complete specification
 - For every state, every event is accepted or rejected
 - Either explicitly or implicitly

State name checklist

- Poor names are indications of
 - Incomplete design
 - Or incorrect design
- Names must be meaningful in the context of the application
- Adjectives are best
 - Past participles are OK

State name checklist – 2

State names should be passive

- If a state is not necessary, leave it out
 - "Wait states" are often superfluous

Guarded transition checklist question

What would you look for to ensure the guards on transitions are correct in a statechart?

Guarded transition checklist

- Guard variables are visible
- The entire range of truth values for a particular event is covered
- Each guard is mutually exclusive of all other guards

Guarded transition checklist – 2

Guards with three or more variables are modeled with a decision table

The evaluation of a guard does not cause side effects

Robustness checklist

- There is an explicit spec for an error-handling or exception-handling mechanism for implicitly rejected events
- Illegal events do not corrupt the machine
 - Preserve the last good state
 - Reset to a valid state
 - Or self-destruct safely

Robustness checklist – 2

- Actions have no side effects on the resultant state
- For contract violations specify mechanism for
 - Explicit exception
 - Error logging
 - Recovery

Well-Formed Subclass Behaviour Checklist

- Does not remove any superclass states
 - All transitions accepted in the superclass are accepted in the subclass
- All guards on superclass transitions are
 - The same for subclass transitions
 - Or weaker for subclass transitions

Well-Formed Subclass Behaviour Checklist – 2

- Subclass does not weaken the state invariant of the superclass
- Subclass may add an orthogonal state defined with respect to its locally introduced instance variables

Well-Formed Subclass Behaviour Checklist – 3

- All inherited actions are consistent with the subclass's responsibilities
 - Verify name-scope sensitive or dynamic binding of intraclass messages is correct
- All inherited accessor events are appropriate in the context of the subclass
- Messages sent to objects that are variables in a guard expression do not have side effects on the class under test

Control faults for state machines

- An incorrect sequence of events is accepted
- An incorrect sequence of outputs is produced

State control faults question

What types of state control faults can occur in a statechart?

Types of state control faults

Missing transition Incorrect transition

Missing action Incorrect action

Trap door Sneak path

Corrupt state Illegal message failure

Occur individually or any nightmare combination

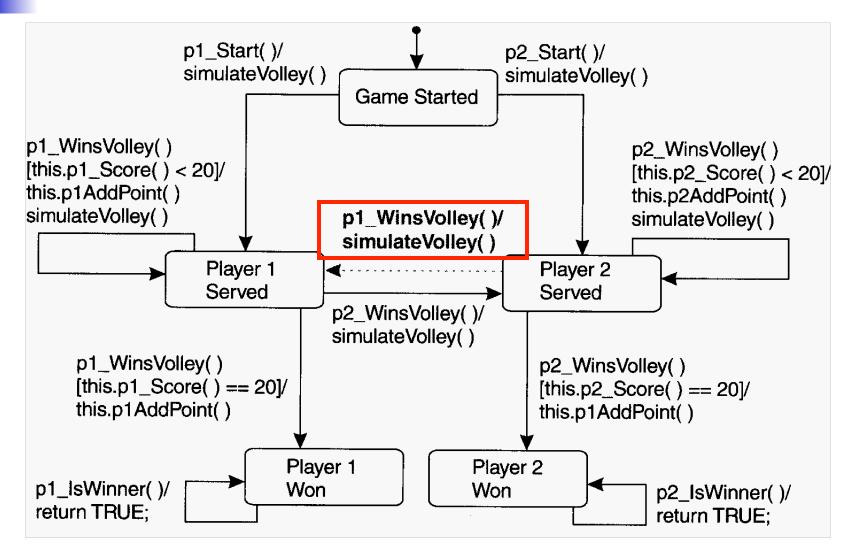
Are all combinations possible?

State control faults

Event	Action	Resultant State	Error Description
OK	OK	OK Wrong Corrupt	Normal transition Incorrect state Corrupted state
	Wrong/ undefined	OK Wrong Corrupt	Incorrect action Incorrect action, wrong state Incorrect action, corrupt state
	Missing	OK Wrong Corrupt	Missing action Missing action, incorrect state Missing action, corrupt state
Reject Legal	DC	Same Defined Corrupt	Missing transition, no side effect Missing transition, side effect Missing transition, corrupt state
Accept Illegal	Defined for this machine	Same Defined Corrupt	Sneak path, no side effect Sneak path with side effect Sneak path to corrupt state
	Undefined	Same Defined Corrupt	Sneak path, no side effect, incorrect output Sneak path with side effect, incorrect output Sneak path to corrupt state, incorrect output
Accept Undefined	Defined for this machine	Same Defined Corrupt	Trap door to action Trap door to action, side effect Trap door to action, corrupt state
	Undefined	Same Defined Corrupt	Trap door with incorrect output Trap door with incorrect output and side effect Trap door with incorrect output to corrupt state

Missing transition question

How can you tell from the behaviour of a statechart that there is a missing transition?



Missing transition

Implementation does not respond to a valid event-state pair

Resultant state is incorrect but not corrupt

Missing transition – 2

Incorrect transition question

How can you tell from the behaviour of a statechart that there is an incorrect transition?

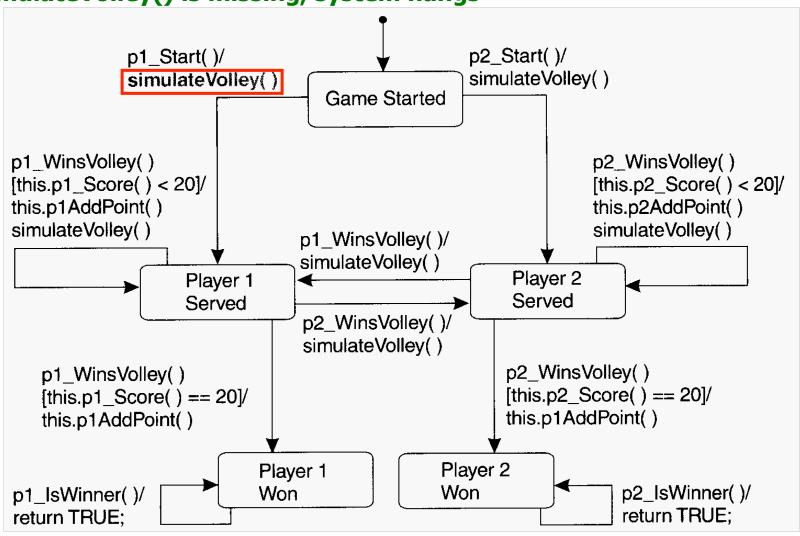
Incorrect transition

- Implementation behaves as if an incorrect resultant state has been reached
- Resultant state is incorrect but not corrupt

Incorrect transition – 2

Missing action question

How can you tell from the behaviour of a statechart that there is a missing action?


Missing action

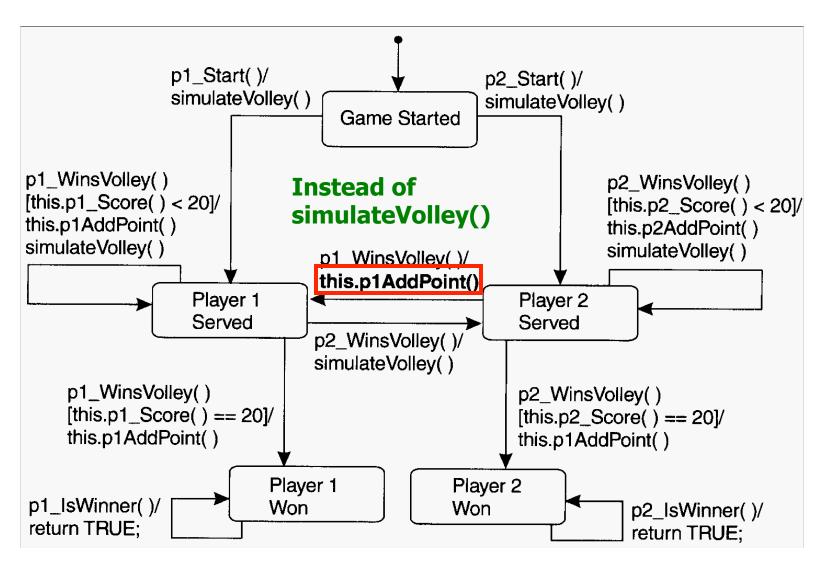
- Implementation does not have an action for a transition
 - Can have incorrect output
 - Later be in an incorrect state
 - Wait forever for the missing action to occur

Missing action – 2

If simulateVolley() is missing, system hangs

Incorrect action question

How can you tell from the behaviour of a statechart that there is an incorrect action?

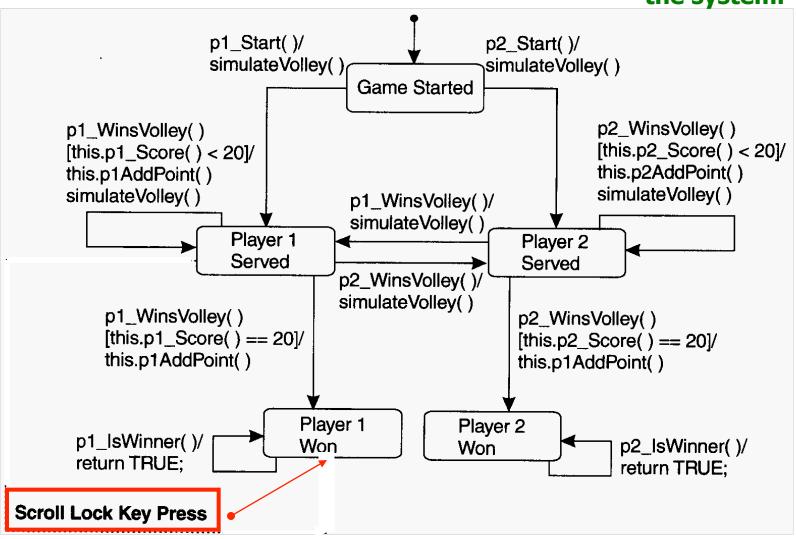


Incorrect action

- Implementation produces the wrong action for a transition
 - Different case from incorrect output for an action
 - Have incorrect output
 - Later be in an incorrect state

Incorrect action – 2

Trap door question


How can you tell from the behaviour of a statechart that there is a trap door?

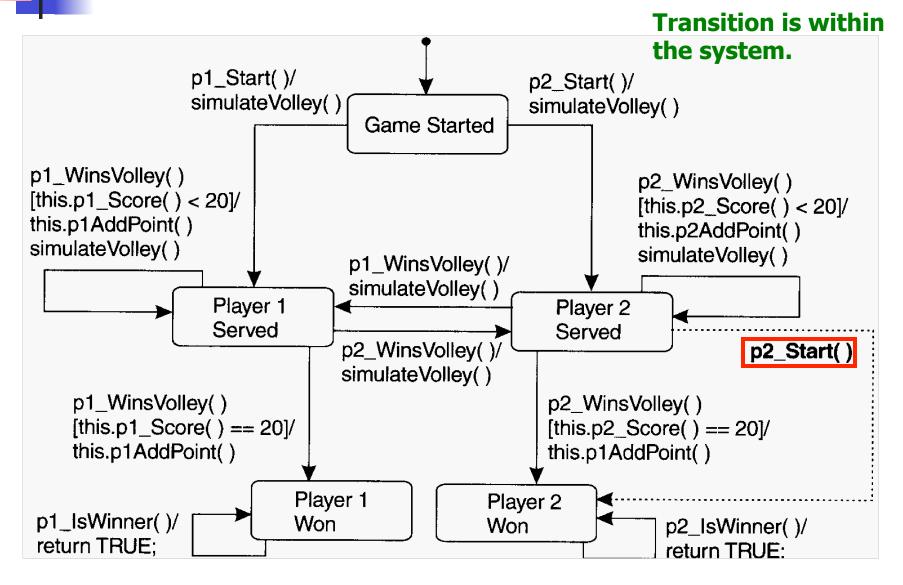
Trap door

- Implementation accepts an entry event that is not defined in the specification
- Can result in
 - Incorrect output
 - Corrupt state
 - Enter wrong state
 - Or combination

Trap door – 2

Transition enters the system.

- Can result from
 - Obsolete features that were not removed
 - Inherited features that are inconsistent with the requirements of the subclass
 - "Undocumented" features added by the developer for debugging purposes
 - Sabotage for criminal or malicious purposes


Sneak path question

How can you tell from the behaviour of a statechart that there is a sneak path?

- Implementation for a state accepts an event that is
 - Illegal
 - Or unspecified
- Can result in
 - Incorrect output
 - Corrupt state
 - Enter wrong state
 - Or combination

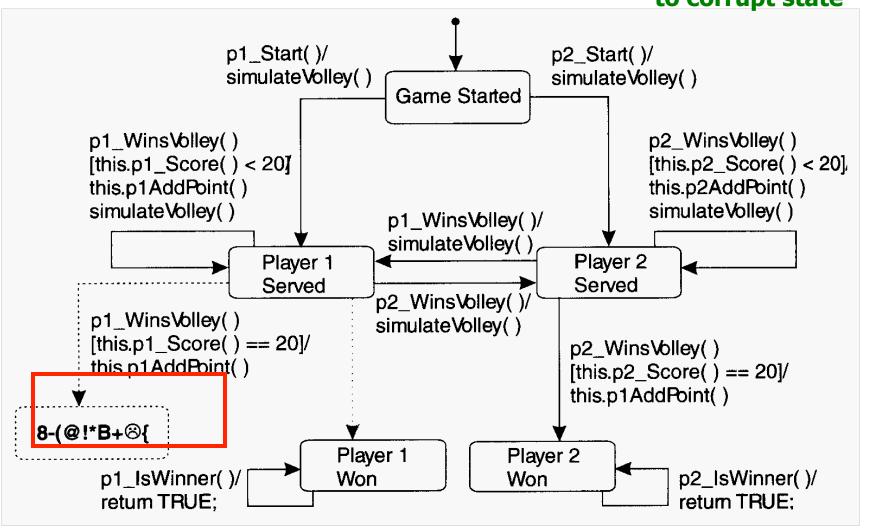
Sneak path

Sneak path – 3

- Can result from
 - Obsolete features that were not removed
 - Inherited features that are inconsistent with the requirements of the subclass
 - "Undocumented" features added by the developer for debugging purposes
 - Sabotage for criminal or malicious purposes

Corrupt state question

How can you tell from the behaviour of a statechart that there is a corrupt state?



- Implementation computes a state that is not valid
 - Either the class invariant or state invariant is violated
 - Due to coding and / or design errors

Corrupt state – 2

Incorrect transition to corrupt state

Incorrect Composite Behaviour

- Misuse of inheritance with modal classes can lead to state control bugs
 - Subclasses can conflict with sequential requirements of a superclass
 - Need to test beyond the scope of one class

Incorrect Composite Behaviour – 2

- Bugs occur for the following reasons
 - Missing or incorrect redefinition of a method
 - Subclass extension of the local state conflicts with a superclass state
 - Subclass fails to retarget a superclass transition
 - Switches to an incorrect or undefined superclass state

Incorrect Composite Behaviour – 3

- Bugs occur for the following reasons cont'd
 - Order of evaluation of guards and preconditions is incorrect or sensitive to the order of evaluation
 - Guards behave as if an extra state exists
 - Order of guard evaluation produces a side effect in the subclass that is not present in the superclass
 - Default name scope resolution results in guard parameters being bound to the wrong subclass or superclass methods