
State-Based Testing 
Part A – Modeling states"

Generating test cases for complex behaviour!
!
!
!

Reference:!Robert V. Binder  
	Testing Object-Oriented Systems: Models, Patterns, and Tools  
	Addison-Wesley, 2000, Chapter 7!

SM–2

Motivation"

  We are interested in testing the behaviour of many different
types of systems, including event-driven software systems!

  Interaction with GUI systems can follow a large number of
paths!

  State machines can model event-driven behaviour!

  If we can express the system under test as a state machine,
we can generate test cases for its behaviour!

SM–3

OO Systems"

  State-based testing is well suited to OO Systems!

  Behaviour responsibility is distributed over!
  Classes, clusters, subsystem or system"
  Behaviour bugs due to complex and implicit structure"

SM–4

State machine"

  What is a state machine?"

SM–5

A state machine is …"

  A system whose output is determined by both current state
and past input!

  Previous inputs are represented in the current state!

  State-based behaviour!
  Identical inputs are not always accepted"

  Depends upon the state"
  When accepted, they may produce different outputs"

  Depends upon the state"

SM–6

Building blocks of a state machine"

  What are the building blocks of a state machine?!

SM–7

Building blocks of a state machine – 2"

  State!
  An abstraction that summarizes past inputs, and

determines behaviour on subsequent inputs"

  Transition!
  An allowable two-state sequence. Caused by an event"

  Event!
  An input or a time interval"

  Action!
  The output that follows an event"

SM–8

State machine behaviour"

"

"
  Describe the behaviour of a state machine?!

SM–9

State machine behaviour – 2"

1.  Begin in the initial state"

2.  Wait for an event!

3.  An event comes in!
1.  If not accepted in the current state, ignore"
2.  If accepted, a transition fires, output is produced (if

any), the resultant state of the transition becomes
the current state"

4.  Repeat from step 2 unless the current state is a final state"

SM–10

State machine properties"

  How events are generated is not part of the model!

  Transitions fire one at a time!

  The machine can be in only one state at a time!

  The current state cannot change except by a defined
transition!

  States, events, transitions, actions cannot be added during
execution!

SM–11

State machine properties – 2"

  Algorithms for output creation are not part of the model!

  The firing of a transition does not consume any amount of
time!
  An event is instantaneous"

  It has no beginning or ending"
  Beginnings and endings imply duration"

The challenge"
"How to model the behaviour of a given
"system using a state machine?"

SM–12

State transition diagram"

  What is a state transition diagram?"

SM–13

State transition diagram – example"

SM–14

Complete & incomplete specifications"

  What are complete and incomplete state machine
specifications?!

SM–15

Complete & incomplete specifications – 2"

  Complete specifications!
  A transition for every event-state pair  
"

  Incomplete specifications!
  The norm for modeling"

  For design too cumbersome to completely specify,
as only a small subset is of interest 
"

  Cannot ignore unspecified event-state pairs for testing"
  Why?"

SM–16

Equivalent states"

  What are equivalent states?"

  What problem exists with equivalent states?!

SM–17

Equivalent states"

  Any two states are equivalent!
  If all possible event sequences applied to these states

result in identical behaviour"
  By looking at the output cannot determine from which

state machine was started"
  Can extend to any pair of states  
"

  Minimal machine has no equivalent states!

SM–18

Equivalent states"

  What problem exists with equivalent states?!

SM–19

Equivalent states"

  A model with equivalent states is redundant!
  Probably incorrect"
  Probably incomplete"

SM–20

Reachability"

  What is reachability?!

SM–21

Reachability – 2"

  State Sf is reachable from state St!
  If there is a legal event sequence that moves the

machine from Sf to St"
  Just stating a state is reachable implies reachable

from the initial state"

SM–22

Reachability problems"

  Using the notion of reachability, what problems does it
show?!

SM–23

Reachability problems – 2"

  Dead state!
  Cannot leave"

  Cannot reach a final state"

  Dead loop!
  Cannot leave"

  Cannot reach a final state"

  Magic state!
  Cannot enter – no input transitions"
  Can go to other states"

  Extra initial state"

SM–24

Guarded transitions"

  What is a guarded transition?!

SM–25

Guarded transitions – 2"

  The stack example state machine is ambiguous!
  There are two possible reactions to push and pop in

the Loaded state"

  Guards can be added to transitions!

  A guard is a predicate associated with the event!

  A guarded transition cannot fire unless the guard predicate
evaluates to true!

SM–26

Guarded transitions – example"

SM–27

Limitations of the basic model"

  Limited scalability!
  Even with the best tools available, diagrams with 20

states or more are unreadable"

  Concurrency cannot be modeled!
  Different processes can be modeled with different

state machines, but the interactions between them
cannot"

  Not specific enough for Object-Oriented systems!

SM–28

Statechart – Scalability – traffic light example"

SM–29

Traffic light with superstates – all states view"

Superstates!

Common to 
all inner states"

Initial state!

SM–30

Traffic light – top level view"

SM–31

Traffic light – level 1 view"

SM–32

Traffic light – level 2 view"

SM–33

Statechart advantages"

  Easier to read!

  Suited for object oriented systems (UML uses statecharts)!

  Hierarchical structure helps with state explosion!

  They can be used to model concurrent processes as well!

SM–34

Statechart problems"

  Can vary in their details and implementation with different
case systems!
  Need to be very careful when testing"

SM–35

Concurrent statechart"

SM–36

State model"

  Must support automatic test generation!

  The following criteria must be met!
  Complete and accurate reflection of the

implementation to be tested"
  Allows for abstraction of detail"
  Preserves detail that is essential for revealing faults"
  Represents all events and actions"
  Defines state so that the checking of resultant state

can be automated"

SM–37

What is a state?"

  We need an executable definition that can be evaluated
automatically!

  An object with two Boolean fields has 4 possible states?!
  This would lead to trillions of states for typical classes"

SM–38

Trillions of states"

SM–39

What is a state? – 2"

  How can we address the problem?!

SM–40

What is a state? – 3"

  A set of variable value combinations that share some property
of interest!
  Can be coded as a Boolean expression"

SM–41

An example"

  Consider the following class 
 
 
 
 
!

  The cross-product of all values is a primitive view of the state
space!
  Yields too many states"

  What abstraction gives fewer states?"

  How is the abstraction represented?"

Class Account {
 AccountNumber number;
 Money balance;
 Date lastUpdate;
 …
}

SM–42

Three abstract states"
Shaded volumes

SM–43

State invariants"

  A valid state can be expressed with a state invariant!
  A Boolean expression that can be checked 
"

  A state invariant defines a subset of the values allowed by the
class invariant!

 ensure a or b"
  In Eiffel this defines two possible states"

SM–44

Transitions"

  A transition is a unique combination of!
  Two state invariants"

  One for the accepting"
  One for the resultant state"
  Both may be the same"

  An associated event"
  An optional guard expression"
  Optional action or actions"

SM–45

Transition events"

  A message sent to the class under test!

  A response received from a supplier of the class under test!

  An interrupt or similar external control action that must be
accepted!

SM–46

Transition actions & guards"

  A guard!
  Predicate associated with an event"
  No side effects  
"

  An action!
  The side effect that occurs"

SM–47

Alpha states"

  The initial state of an object is the state right after it is
constructed!

  However, a class may have multiple constructors that leave
the object in different states!

  To avoid modeling problems we define that an object is in
the α state just before construction!

  α transitions go from α state to a constructor state"

SM–48

Omega states"

  Similarly with ω and destruction!

  Not necessary to model ω for languages that have
garbage collection"

  ω transitions go from a destructor state to the ω
state"

