
Levels of Testing!

Chapter 12!

Beyond unit testing!

LOT–2

Life cycle models!

  What is a life cycle model of software development?!

  What is the traditional life cycle model?!

LOT–3

V-Model – development & testing!

Requirements

Detailed
Design

Module
implementation Unit test

Integration test

System test

Acceptance
test

Customer

Developer

Functional

Structural

Architectural
Design

LOT–4

Traditional model!

  Waterfall!
  Levels correlate with levels of testing!
  Functional testing is implied!
  Bottom up testing is implied!

LOT–5

  Testing of individual components!

  Unit is best understood!

  Have both functional and structural testing!

Developer – unit testing stage!

LOT–6

  Testing to expose problems arising from the combination of
components 
!

  Bottom up!
  Combine smaller units into larger ones, until

system level is reached!

Developer – integration testing stage!

LOT–7

  Testing the complete system prior to delivery!

  Functional testing!

  No good structural notation for descriptions !

Developer – system testing stage!

LOT–8

  Acceptance testing!
  Testing by users to check that the system satisfies  

requirements. Sometimes called alpha testing!

Customer testing stage!

Basic development methods!

  What are the three basic methods that can be used to
develop a system?!

LOT–9

LOT–10

  Top down!

  Bottom up!

  Big Bang!

Basic development methods – 2!

LOT–11

Top-down development!

  How does it work?!

LOT–12

Top-down development – 2!

  Build upper level!

  Test using stubs!
  Throw away!

LOT–13

Bottom-up development !

  How does it work?!

LOT–14

Bottom-up development – 2!

  Build lower levels!

  Test with drivers!
  Throw away!

LOT–15

Big bang development!

  How does it work?!

LOT–16

Big bang development!

  Build everything!

  No stubs or drivers!

  Then test!

LOT–17

Problems with waterfall model !

  What are they?!

LOT–18

Problems with waterfall model – 2!

  Too slow!

  Too rigid!

  Too focused on top-down functional development and
bottom-up testing!

  Not the way people work!

  Staffing levels of different types batched at different times with
the levels requiring large resource shifts from low to high and
back.!

LOT–19

Waterfall spin-off models!

  Development in stages!
  Level use of staff!
  Testing now entails both!

  Regression!
  Progression!

LOT–20

Waterfall spin-off models – 2!

  Main variations involve constructing a sequence of systems!
  Incremental!
  Evolutionary!
  Spiral 
!

  Waterfall model is applied to each build!
  Smaller problem than original!
  System functionality does not change during a build!

LOT–21

Incremental model!

  Have high-level design at the beginning!

  Low-level design results in a series of builds!
  Incremental testing is useful!
  System testing is not affected!

  Level off staffing problems!

LOT–22

Evolutionary model!

  First build is defined!

  Priorities and customer define next build!

  Difficult to have initial high-level design!
  Incremental testing is difficult!
  System testing is not affected!

LOT–23

Spiral model!

  Combination of incremental and evolutionary!

  After each build assess benefits and risks!
  Use to decide go/no-go and direction!

  Difficult to have initial high-level design!
  Incremental testing is difficult!
  System testing is not affected!

LOT–24

Spiral model – advantage!

  Earlier synthesis and deliverables!

  More customer feedback!

  Risk/benefit analysis is rigorous!

LOT–25

Rapid prototyping!

  Specification based life cycle model!

  Build quick and dirty system!
  Good for risk analysis!
  Customer feedback!

  System testing is difficult!
  Where is the specification?!

  Good for acceptance testing!
  Emphasis is behaviour, not structure!

LOT–26

Executable specifications!

  Specification based life cycle model!

  Extension of rapid prototyping!

  Specific behavioural models are built and executed!
  Statecharts!
  Finite state machines!
  Petri nets!
  Z specification language!

  Customer feedback as for rapid prototyping!

LOT–27

Integration & system testing!

  Need to know difference between integration and system
testing!
  Avoid testing gaps and redundancies across levels!
  Set testing goals appropriate for each level!

  Structural & behavioural views separate integration and
system testing goals!

LOT–28

Threads!

  What are they?!

LOT–29

Threads – 2!

  Use cases!

  Describe behaviour!

  Have threads at different levels!
  What are the levels?!

LOT–30

Threads – 3!

  Use cases!

  Describe behaviour!

!

  Have threads at different levels!
  What are the levels?!

  System!
  Integration!
  Unit!

LOT–31

Thread levels!

  What are the threads at each level?!
  System!

  ???!

  Integration!
  ???!

  Unit!
  ???!

LOT–32

Thread levels!

  System level!
  Data context and sequence of port events  
!

  Integration!
  Path in a finite state machine  
!

  Unit!
  Path in a program graph!

LOT–33

Structural insights – integration testing!

  Assumes unit level testing completed!

  Can be seen as interface testing!
  What about algorithms at higher levels?!

  Uses preliminary design!

LOT–34

Structural insights – system testing!

  Requirements level!

  What is the difference between the following?!
  requirements!
  preliminary design!

  What-how and other definitions too vague!
  Inevitability of intertwining specification and design!

LOT–35

Behavioural insights!

  System level!
  Deals with port boundaries!

  What the user sees and does!
  Sequences of integration-level threads!

  Integration level!
  Deals with boundaries between port and unit!

  Within the system!
  Sequences of unit-level threads!

