
Structural Testing Review!

Chapter 11!

STR–2

The big question!

  When should testing stop?!

STR–3

Possible stopping criteria!

  Run out of time!

  Continued testing causes no new failures!

  Continued testing reveals no new faults!

  Cannot think of any new test cases!

  Reach a point of diminishing returns!

  Mandated coverage has been attained!

  All faults have been removed!

Functional testing problems!

  What are the problems with functional testing?!

STR–4

STR–5

Functional testing problems – 2!

  Functional testing methods may produce test suites with!
  Serious gaps!
  Lots of redundancy!

Measuring gaps and redundancy!

  How do know how big are the problems of gaps and
redundancy?!

STR–6

STR–7

Measuring gaps and redundancy – 2!

  Structural testing analysis makes it possible to measure the
extent of these problems!

Paths! p1! p2! p3! p4! p5! p6! p7! p8! p9! p10! p11!
Nominal! 3! 3! 1! 3! 1! 3! 1! 0! 0! 0! 0!
Worst case! 5! 12! 6! 11! 6! 12! 7! 17! 18! 19! 12!

! ! – graph paths 
 Triangle program – nominal boundary value analysis 

! ! – worst case boundary value analysis!

STR–8

Measurement!

  What do we need to be able to measure?!

STR–9

Measurement – 2!

  Need a standard of measurement!
  A metric!

!

STR–10

Structural metric!

  What is a program structural metric?!

STR–11

Structural metric – 2!

  A program structural metric is a standard of measurement for
the structure of a program!

STR–12

Structural metric – 3!

  What are the components of a structural metric?!

STR–13

Structural metric – 2!

  A structural metric S identifies s coverage elements in the
unit under test!

  A testing method M produces m test cases!

  When the m test cases run, they visit c coverage elements!

  By comparing c and s we have a measurement of how good
is our set of test cases!

STR–14

Metric definitions!

  What definitions are used for structural metrics for a
method M with respect to a metric S?!

STR–15

Metric definitions – 2 !

  Coverage!

  Redundancy!

  Net redundancy!

STR–16

Coverage definition!

  What the definition of coverage?!

STR–17

Coverage definition – 2!

  Coverage of method M with respect to metric S is 
  

! ! !C (M, S) = c / s!
  Deals with gaps!

  What does the ratio tell us?!

STR–18

Coverage definition – 3!

  Coverage of method M with respect to metric S is 
  

! ! !C (M, S) = c / s!
  Deals with gaps!

  a ratio < 1 means there are gaps!

STR–19

Redundancy definition!

  What the definition of redundancy?!

STR–20

Redundancy definition – 2!

  Redundancy of method M with respect to metric S is 
 

! ! !R (M, S) = m / s!
  Deals with absolute redundancy!

  What does the ratio tell us?!

STR–21

Redundancy definition – 3!

  Redundancy of method M with respect to metric S is 
 

! ! !R (M, S) = m / s!
  Deals with absolute redundancy!

  Ratio of 1 is best!
  Larger values imply more redundancy!
  Smaller values imply gaps!
  Not so useful!

  WHY?!

!

STR–22

Redundancy definition – 3!

  Redundancy of method M with respect to metric S is 
 

! ! !R (M, S) = m / s!
  Deals with absolute redundancy!

  Ratio of 1 is best!
  Larger values imply more redundancy!
  Smaller values imply gaps!
  Not so useful!

  Could have massive redundancy with massive gaps
giving a small ratio!

!

STR–23

Net redundancy definition!

  What the definition of net redundancy?!

STR–24

Net redundancy definition – 2!

  Net redundancy of method M with respect to metric S is 
 
 ! ! !NR (M, S) = m / c!
  Deals with relative redundancy!

  What does the ratio tell us?!

STR–25

Net redundancy definition – 3!

  Net redundancy of method M with respect to metric S is 
 
 ! ! !NR (M, S) = m / c!
  Deals with relative redundancy!

  best is 1!
  Very useful, shows the redundancy of what is

tested!

STR–26

Metric values for triangle program!

Method! m! c! s! C(M,S)! R(M,S)! NR(M,S)!

Boundary
Value! 15! 7! 11! 0.64! 1.36! 2.14!

Worst Case
Analysis! 125! 11! 11! 1.00! 11.36! 11.36!

WN ECT! 4! 4! 11! 0.36! 0.36! 1.00!

Decision
Table! 8! 8! 11! 0.72! 0.72! 1.00!

STR–27

Metric values for commission program!

Method! m! c! s! C(M,S)! R(M,S)!

Output BVA! 25! 11! 11! 1! 2.27!

Decision
table! 2! 11! 11! 1! 0.27!

DD-path! 25! 11! 11! 1! 2.27!

DU-path! 25! 33! 33! 1! 0.76!

Slice! 25! 40! 40! 1! 0.63!

STR–28

Coverage example!

  TEX (Donald Knuth) and AWK (Aho, Weinberger, Kernigan)
are widely used programs with comprehensive functional test
suites!

  Coverage analysis shows the following percentage of items
covered!

System! Segment! Branch! P-use! C-use!

TEX! 85%! 72%! 53%! 48%!

AWK! 70%! 59%! 48%! 55%!

STR–29

Coverage usefulness!

  100% coverage is never a guarantee of bug-free software!

  What can coverage reports give us?!

STR–30

Coverage usefulness – 2!

  Coverage reports can!
  Point out inadequate test suites!
  Suggest the presence of surprises, such as blind

spots in the test design!
  Help identify parts of the implementation that

require structural testing!

STR–31

Coverage usefulness – 3!

  All possible coverage elements s is very big!
  On what basis do we select appropriate subsets?!

STR–32

Coverage usefulness – 3!

  Can try by selecting appropriate paths!
  By fault type!
  By risk / fear!

STR–33

Is 100% coverage possible?!

  Can you suggest cases that prevent 100% coverage?!

STR–34

Is 100% coverage possible? – 2!

  Lazy (short-circuit) evaluation!
  a && b && c

  Mutually exclusive conditions!
  (x > 2) || (x < 10)

  Redundant predicates!
  if (x == 0) do1; else do2;
if (x != 0) do3; else do4;!

  Dead code!

  “This should never happen”!

STR–35

How to measure coverage?!

  Can you suggest ways to measure coverage; i.e. how do
you determine c?!

STR–36

How to measure coverage? – 2!

  The source code is instrumented!

  Depending on the code coverage model, code that writes to a
trace file is inserted in every branch, statement etc.!

  Most commercial tools measure segment and branch
coverage!

STR–37

Questions about Coverage!

  Is 100% coverage the same as exhaustive testing?!

  Are branch and path coverage the same?!

  Can path coverage be achieved?!

  Is every path in a control flow graph testable?!

  Is less than 100% coverage acceptable?!

  Can I trust a test suite without measuring coverage?!

STR–38

Coverage counter-example vending machine!

void give_change(int price, deposit) {
 int n_100, n_25, n_10, n_5, change_due;
 if (deposit <= price) { change_due = 0; }
 else {
 change_due = deposit – price;
 n_100 = change_due / 100;
 change_due = change_due – n_100*100;
 n_25 = change_due / 25;
 change_due = change_due – n_25*25;
 n_10 = change_due / 10;
 change_due = change_due – n_10*10;
 n_5 = change_due / 10; // Cut-and-paste bug
 }
}

Cannot guarantee path testing will use revealing
test values for deposit and price

STR–39

Coverage counter-example aircraft control!

void flight_control_event_handler (event e) {
 switch(e)
 { ...
 case RAISE_LANDING_GEAR:

 landing_gear_motor (turn_on_until_raised);
 break;
 ...
 }
}

Can you find the bug?
Will any path test find the bug?
What can correct the bug?

STR–40

Trend line test coverage of items!

DD_path Basis
path

DU-path
Sophistication

high

low

Number of test coverage items

Slice

STR–41

Trend line test method effort!

DD_path Basis
path

DU-path
Sophistication

high

low

Effort to find test coverage items

Slice

