
Slices 

Chapter 10!
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Program slice 

  Analyze program by focusing on parts of interest, 
disregarding uninteresting parts.!
  The point of slices is to separate a program into 

components that have a useful functional meaning!
  Ignore those parts that do not contribute to the 

functional meaning of interest!
  Cannot do this with du-paths, as slices are not simply 

sequences of statements or statement fragments!
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Program slice – Informally 

  A program slice is a set of program statements that 
contributes to or affects a value of a variable at some point 
in a program!
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Program slice – Formally 

  Given a program P and a set of variables V in P, a slice 
on V at statement n, S(V, n), is the set of all statements 
and statement fragments in P prior to the node n that 
contribute to the values of variables in V at node n.!
  Usually statements and fragments correspond to 

numbered nodes in a program graph, so  
S(V, n) is a set of node numbers.!

  "Prior to" is a dynamic execution time notion!
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Program slice – meaning of "contributes to" 

  Refine meaning of usage and defining nodes!
  P-use !– used in a decision predicate!
  C-use !– used in a computation!
  O-use !– used for output!
  L-use !– used for location (pointers, subscripts)!
  I-use !– used for iteration (loop counters, loop 

indices)!
  I-def !– defined by input!
  A-def !– defined by assignment!

  Textbook excludes all non-executable statements such as 
variable declarations!
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Program slide – meaning of "contributes to" – 2 

  What to include in S(V,n)?  Consider a single variable v!
  Include all I-def, A-def!
  Include any C-use, P-use of v, if excluding it would 

change the value of v!
  Include any P-use or C-use of another variable, if 

excluding it would change the value of v!
  L-use and I-use!

  Inclusion is a judgment call, as such use does cause 
problems !

  Exclude all non-executable nodes such as variable 
declarations – if a slice is not to be compliable!

  Exclude O-use, as does not change the value of v!
!
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1  int max = 0;!
2  int j = s.nextInt();!
3  while (j > 0)!
4    if (j > max) {!
5      max = j;!
6    }!
7    j = s.nextInt();!
8  }!
9  System.out.println(max);!

Example 1 – program 

A definition of j 

A C-use of j 

P-uses of j & max 

A definition of j 

Definitions 
of max 

A C-use of max 
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Example 1 – some slices 

  This not an exciting program wrt to slices!
  S ( max , 9 ) = { 1, 4, 5, 9 }!
  S ( max , 9 ) = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }!
  S ( max , 5 ) = { 1, 4, 5, 6, 8 }!
  S ( max , 5 ) = { 1, 2, 3, 4, 5, 6, 7, 8 }!
  S ( j , 7 ) = { 2, 3, 4, 5 6, 7, 8 }!
  S ( j , 5 ) = {1, 2, 3, 4, 5, 6, 7, 8}!
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Slice style & technique 

  Make slices on one variable!
  Sometimes slices with more variables are trivial super 

sets of a one variable case, then a slice on many 
variables is useful!

  Do not make a slice S(V, n) where the variables of 
interest are not in node n!

  Leads to slices that are too big!



SL–10 

Slice style & technique – 2 

  Make slices for all A-def nodes!

  Make slices for all P-def nodes – very useful in decision 
intensive programs!

  Try to make slices compliable!
  Means including declarations and compiler directives!
  Such slices become executable and more easily tested!
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Slice style & technique – 3 

  Avoid slices on C-use!
  They tend to be redundant!

  Avoid slices on O-use!
  They are the union of A-def and I-def slices!
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Slice style & technique – 4 

  Relative complement of slices can have diagnostic value!
  If you have difficulty at a part, divide the program into 

two parts!
  If the error does not lie in one part, then it must be in 

the relative complement!

  Slices contain define/reference information!
  When two slices are the same set, the corresponding 

paths are definition clear!
!

!



SL–13 

Slice style & technique – 5 

  Slices and DD-paths have a many-to-many relationship!
  Nodes in one slice may be in many DD-paths, and 

nodes in one DD-path may be in many slices!
  Sometimes well-chosen relative complement slices can 

be identical to DD-paths!

  Developing a lattice of slices can improve insight in 
potential trouble spots!
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Slices and programming practice 

  Slice testing is an example where consideration of testing 
can lead to better program development!
  Build and test a program in slices!
  Merge / splice slices into larger programs!
  Use slice composition to re-develop difficult sections of 

program text!


