
Slices

Chapter 10!

SL–2

Program slice

  Analyze program by focusing on parts of interest,
disregarding uninteresting parts.!
  The point of slices is to separate a program into

components that have a useful functional meaning!
  Ignore those parts that do not contribute to the

functional meaning of interest!
  Cannot do this with du-paths, as slices are not simply

sequences of statements or statement fragments!

SL–3

Program slice – Informally

  A program slice is a set of program statements that
contributes to or affects a value of a variable at some point
in a program!

SL–4

Program slice – Formally

  Given a program P and a set of variables V in P, a slice
on V at statement n, S(V, n), is the set of all statements
and statement fragments in P prior to the node n that
contribute to the values of variables in V at node n.!
  Usually statements and fragments correspond to

numbered nodes in a program graph, so  
S(V, n) is a set of node numbers.!

  "Prior to" is a dynamic execution time notion!

SL–5

Program slice – meaning of "contributes to"

  Refine meaning of usage and defining nodes!
  P-use !– used in a decision predicate!
  C-use !– used in a computation!
  O-use !– used for output!
  L-use !– used for location (pointers, subscripts)!
  I-use !– used for iteration (loop counters, loop

indices)!
  I-def !– defined by input!
  A-def !– defined by assignment!

  Textbook excludes all non-executable statements such as
variable declarations!

SL–6

Program slide – meaning of "contributes to" – 2

  What to include in S(V,n)? Consider a single variable v!
  Include all I-def, A-def!
  Include any C-use, P-use of v, if excluding it would

change the value of v!
  Include any P-use or C-use of another variable, if

excluding it would change the value of v!
  L-use and I-use!

  Inclusion is a judgment call, as such use does cause
problems !

  Exclude all non-executable nodes such as variable
declarations – if a slice is not to be compliable!

  Exclude O-use, as does not change the value of v!
!

SL–7

1 int max = 0;!
2 int j = s.nextInt();!
3 while (j > 0)!
4 if (j > max) {!
5 max = j;!
6 }!
7 j = s.nextInt();!
8 }!
9 System.out.println(max);!

Example 1 – program

A definition of j

A C-use of j

P-uses of j & max

A definition of j

Definitions
of max

A C-use of max

SL–8

Example 1 – some slices

  This not an exciting program wrt to slices!
  S (max , 9) = { 1, 4, 5, 9 }!
  S (max , 9) = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }!
  S (max , 5) = { 1, 4, 5, 6, 8 }!
  S (max , 5) = { 1, 2, 3, 4, 5, 6, 7, 8 }!
  S (j , 7) = { 2, 3, 4, 5 6, 7, 8 }!
  S (j , 5) = {1, 2, 3, 4, 5, 6, 7, 8}!

SL–9

Slice style & technique

  Make slices on one variable!
  Sometimes slices with more variables are trivial super

sets of a one variable case, then a slice on many
variables is useful!

  Do not make a slice S(V, n) where the variables of
interest are not in node n!

  Leads to slices that are too big!

SL–10

Slice style & technique – 2

  Make slices for all A-def nodes!

  Make slices for all P-def nodes – very useful in decision
intensive programs!

  Try to make slices compliable!
  Means including declarations and compiler directives!
  Such slices become executable and more easily tested!

SL–11

Slice style & technique – 3

  Avoid slices on C-use!
  They tend to be redundant!

  Avoid slices on O-use!
  They are the union of A-def and I-def slices!

SL–12

Slice style & technique – 4

  Relative complement of slices can have diagnostic value!
  If you have difficulty at a part, divide the program into

two parts!
  If the error does not lie in one part, then it must be in

the relative complement!

  Slices contain define/reference information!
  When two slices are the same set, the corresponding

paths are definition clear!
!

!

SL–13

Slice style & technique – 5

  Slices and DD-paths have a many-to-many relationship!
  Nodes in one slice may be in many DD-paths, and

nodes in one DD-path may be in many slices!
  Sometimes well-chosen relative complement slices can

be identical to DD-paths!

  Developing a lattice of slices can improve insight in
potential trouble spots!

SL–14

Slices and programming practice

  Slice testing is an example where consideration of testing
can lead to better program development!
  Build and test a program in slices!
  Merge / splice slices into larger programs!
  Use slice composition to re-develop difficult sections of

program text!

