
The Essence of Testing

Slides are courtesy of
Vassilios Tzerpos

EOT–2

What is testing?

A technical investigation
done to expose

quality-related information
about the product

under test

EOT–3

Defining Testing

 Technical
 Logic, mathematics, models, tools

 Investigative
 An organized and thorough search for information.
 Ask difficult questions (aka run hard test cases) and look

carefully at the results.

 Expose quality-related information
 see the next slide

 About the product under test.

EOT–4

Information Objectives

 Find important bugs, to get them fixed
 Check interoperability with other products
 Help managers make ship/no-ship decisions
 Block premature product releases
 Minimize technical support costs
 Assess conformance to specification
 Conform to regulations
 Minimize safety-related lawsuit risk
 Find safe scenarios for use of the product

Different
objectives

require
different

testing strategies
and will yield

different tests,
different test

documentation
and different test

results.

EOT–5

Our goal

 Learn testing techniques and the situations in which they
apply

 Practice with real testing tools and frameworks

 Learn how to produce quality problem reports

 Study special issues for object-oriented systems

 Understand the importance of systematic testing

EOT–6

Tools - Eclipse

 Best IDE for Java development

 Works seamlessly with Junit for unit testing

 Open source – Download from www.eclipse.org

 In the lab, do: eclipse

 Try it with your own Java code

EOT–7

Tools - Junit

 A framework for automated unit testing of Java code

 Written by Erich Gamma (of Design Patterns fame) and
Kent Beck (creator of XP methodology)

 Uses Java 5 features such as annotations and static
imports

 Download from www.junit.org

EOT–8

A first example

 Test ADDER:
 Adds two numbers that the user

enters
 Each number should be one or

two digits
 The program echoes the entries,

then prints the sum.
 Press <ENTER> after each

number

 Screen for a test run

? 2
? 3
5

?

EOT–9

Immediate issues

 Nothing shows what this program is. You don’t even know
you run the right program.

 No on-screen instructions.

 How do you stop the program?

 The 5 should probably line up with the 2 and 3.

EOT–10

A first set of test cases

99 + 99 -99 + -99
99 + 56 56 + 99
99 + -14 -14 + 99
38 + -99 -99 + 38
-99 + -43 -43 + -99
9 + 9 0 + 0
0 + 23 -23 + 0

EOT–11

Choosing test cases

 Not all test cases are significant.

 Impossible to test everything (this simple program has
39,601 possible different test cases).

 If you expect the same result from two tests, they belong
to the same class. Use only one of them.

 When you choose representatives of a class for testing,
pick the ones most likely to fail.

EOT–12

Further test cases

100 + 100
<Enter> + <Enter>
123456 + 0
1.2 + 5
A + b
<CTRL-C> + <CTRL-D>
<F1> + <Esc>

EOT–13

Other things to consider

 Storage for the two inputs or the sum
 127 or 128 can be an important boundary case

 Test cases with extra white space

 Test cases involving <Backspace>

 The order of the test cases might matter
 E.g. <Enter> + <Enter>

EOT–14

An object-oriented example

 Input: Three integers, a, b, c, the lengths of the side of a
triangle

 Output: Scalene, isosceles, equilateral, invalid

EOT–15

Test case classes

 Valid scalene, isosceles, equilateral triangle

 All permutations of two equal sides

 Zero or negative lengths

 All permutations of a + b < c

 All permutations of a + b = c

 All permutations of a = b and a + b = c

 MAXINT values

 Non-integer inputs

EOT–16

Example implementation

class Triangle{
public Triangle(LineSegment a, LineSegment b,

 LineSegment c)
public boolean is_isosceles()
public boolean is_scalene()
public boolean is_equilateral()
public void draw()
public void erase()

}
class LineSegment {

public LineSegment(int x1, int y1,
 int x2, int y2)
}

EOT–17

Extra Tests

 Is the constructor correct?

 Is only one of the is_* methods true in every case?

 Do results repeat, e.g. when running is_scalene twice
or more?

 Results change after draw or erase?

 Segments that do not intersect or form an interior triangle

EOT–18

Inheritance tests

 Tests that apply to all Figure
objects must still work for
Triangle objects

 Tests that apply to all
ClosedFigure objects must still
work for Triangle objects

Triangle

Figure

ClosedFigure

EOT–19

Testing limits

 Dijkstra:
“Program testing can be used to show the
presence of defects, but never their absence”

 It is impossible to fully test a software system in a
reasonable amount of time or money

 When is testing complete?
 When you run out of time or money.

EOT–20

The infinite set of tests

 There are enormous numbers of possible tests. To test
everything, you would have to:

 Test every possible input to every variable.

 Test every possible combination of inputs to every combination of
variables.

 Test every possible sequence through the program.

 Test every hardware / software configuration, including
configurations of servers not under your control.

 Test every way in which any user might try to use the program.

EOT–21

Testing valid inputs (an example)

 MASPAR is a parallel computer used for mission-critical and life-
critical applications.

 To test the 32-bit integer square root function, all 4,294,967,296
values were checked. This took 6 minutes.

 There were 2 (two) errors, neither of them near any boundary.
 The underlying error was that a bit was sometimes mis-set, but

in most error cases, there was no effect on the final calculated
result.

 Without an exhaustive test, these errors probably wouldn’t have
shown up.

 What about the 64-bit integer square root? How could we find the
time to run all of these?

EOT–22

Testing valid inputs

 There were 39,601 possible valid inputs in ADDER

 In the Triangle example, assuming only integers from 1 to
10, there are 104 possibilities for a segment, and 1012 for
a triangle. Testing 1000 cases per second, you would
need 317 years!

EOT–23

Testing invalid inputs

 The error handling aspect of the system must also be
triggered with invalid inputs

 Anything you can enter with a keyboard must be tried.
Letters, control characters, combinations of these,
question marks, too long strings etc…

EOT–24

Testing edited inputs

 Need to test that editing works (if allowed by the spec)

 Test that any character can be changed into any other

 Test repeated editing
 Long strings of key presses followed by <Backspace> have

been known to crash buffered input systems

EOT–25

Testing input timing variations

 Try entering the data very quickly, or very slowly.

 Do not wait for the prompt to appear

 Enter data before, after, and during the processing of
some other event, or just as the time-out interval for this
data item is about to expire.

 Race conditions between events often leads to bugs that
are difficult to reproduce

EOT–26

Combination testing

 Example 1: a program crashed when attempting to print preview
a high resolution (back then, 600x600 dpi) output on a high
resolution screen. The option selections for printer resolution and
screen resolution were interacting.

 Example 2: American Airlines couldn’t print tickets if a string
concatenating the fares associated with all segments was too long.

 Example 3: Memory leak in WordStar if text was marked
Bold/Italic (rather than Italic/Bold)

EOT–27

What if you don’t test all inputs?

 Based on the test cases chosen, an implementation that
passes all tests but fails on a missed test case can be
created.

 If it can be done on purpose, it can be done accidentally
too.
 A word processor had trouble with large files that were

fragmented on the disk (would suddenly lose whole
paragraphs)

EOT–28

Testing all paths in the system

A

B

C

D

E

F

G

H

I

X EXIT

< 20 times
through the
loop

Here’s an example that shows that there are too many paths to
test in even a fairly simple program. This is from Myers, The Art
of Software Testing.

EOT–29

Number of paths

 One path is ABX-Exit. There are 5 ways to get to X
and then to the EXIT in one pass.

 Another path is ABXACDFX-Exit. There are 5 ways to
get to X the first time, 5 more to get back to X the
second time, so there are 5 x 5 = 25 cases like this.

 There are 51 + 52 + ... + 519 + 520 = 1014 = 100
trillion paths through the program.

 It would take only a billion years to test every path (if
one could write, execute and verify a test case every
five minutes).

EOT–30

Further difficulties for testers

 Testing cannot verify requirements. Incorrect or
incomplete requirements may lead to spurious tests

 Bugs in test design or test drivers are equally difficult to
find

 Expected output for certain test cases might be difficult to
determine

EOT–31

Conclusion

 Complete testing is impossible
 There is no simple answer for this.

 There is no simple, easily automated, comprehensive oracle
to deal with it.

 Therefore testers live and breathe tradeoffs.

EOT–32

Complete testing

 What do we mean by "complete testing"?
 Complete "coverage": Tested every line/path?
 Testers not finding new bugs?
 Test plan complete?

 Complete testing must mean that, at the end of testing,
you know there are no remaining unknown bugs.

 After all, if there are more bugs, you can find them if you
do more testing. So testing couldn't yet be "complete."

EOT–33

Complete coverage?

 What is coverage?
 Extent of testing of certain attributes or pieces of the program,

such as statement coverage or branch coverage or condition
coverage.

 Extent of testing completed, compared to a population of possible
tests.

 Why is complete coverage impossible?
 Domain of possible inputs is too large.

 Too many possible paths through the program.

EOT–34

Achieving high coverage

 Coverage measurement is a good tool to show
 how far you are from complete testing.

 But it’s a poor tool for investigating how close you are to
completion.

EOT–35

Testers live and breathe tradeoffs

 The time needed for test-related tasks is infinitely larger
than the time available.

 Example: Time you spend on
 Analyzing, troubleshooting, and effectively describing a

failure

 Is time no longer available for
 Designing tests  Documenting tests
 Executing tests  Automating tests
 Reviews, inspections  Training other staff

