
The Essence of Testing

Slides are courtesy of
Vassilios Tzerpos

EOT–2

What is testing?

A technical investigation
done to expose

quality-related information
about the product

under test

EOT–3

Defining Testing

 Technical
 Logic, mathematics, models, tools

 Investigative
 An organized and thorough search for information.
 Ask difficult questions (aka run hard test cases) and look

carefully at the results.

 Expose quality-related information
 see the next slide

 About the product under test.

EOT–4

Information Objectives

 Find important bugs, to get them fixed
 Check interoperability with other products
 Help managers make ship/no-ship decisions
 Block premature product releases
 Minimize technical support costs
 Assess conformance to specification
 Conform to regulations
 Minimize safety-related lawsuit risk
 Find safe scenarios for use of the product

Different
objectives

require
different

testing strategies
and will yield

different tests,
different test

documentation
and different test

results.

EOT–5

Our goal

 Learn testing techniques and the situations in which they
apply

 Practice with real testing tools and frameworks

 Learn how to produce quality problem reports

 Study special issues for object-oriented systems

 Understand the importance of systematic testing

EOT–6

Tools - Eclipse

 Best IDE for Java development

 Works seamlessly with Junit for unit testing

 Open source – Download from www.eclipse.org

 In the lab, do: eclipse

 Try it with your own Java code

EOT–7

Tools - Junit

 A framework for automated unit testing of Java code

 Written by Erich Gamma (of Design Patterns fame) and
Kent Beck (creator of XP methodology)

 Uses Java 5 features such as annotations and static
imports

 Download from www.junit.org

EOT–8

A first example

 Test ADDER:
 Adds two numbers that the user

enters
 Each number should be one or

two digits
 The program echoes the entries,

then prints the sum.
 Press <ENTER> after each

number

 Screen for a test run

? 2
? 3
5

?

EOT–9

Immediate issues

 Nothing shows what this program is. You don’t even know
you run the right program.

 No on-screen instructions.

 How do you stop the program?

 The 5 should probably line up with the 2 and 3.

EOT–10

A first set of test cases

99 + 99 -99 + -99
99 + 56 56 + 99
99 + -14 -14 + 99
38 + -99 -99 + 38
-99 + -43 -43 + -99
9 + 9 0 + 0
0 + 23 -23 + 0

EOT–11

Choosing test cases

 Not all test cases are significant.

 Impossible to test everything (this simple program has
39,601 possible different test cases).

 If you expect the same result from two tests, they belong
to the same class. Use only one of them.

 When you choose representatives of a class for testing,
pick the ones most likely to fail.

EOT–12

Further test cases

100 + 100
<Enter> + <Enter>
123456 + 0
1.2 + 5
A + b
<CTRL-C> + <CTRL-D>
<F1> + <Esc>

EOT–13

Other things to consider

 Storage for the two inputs or the sum
 127 or 128 can be an important boundary case

 Test cases with extra white space

 Test cases involving <Backspace>

 The order of the test cases might matter
 E.g. <Enter> + <Enter>

EOT–14

An object-oriented example

 Input: Three integers, a, b, c, the lengths of the side of a
triangle

 Output: Scalene, isosceles, equilateral, invalid

EOT–15

Test case classes

 Valid scalene, isosceles, equilateral triangle

 All permutations of two equal sides

 Zero or negative lengths

 All permutations of a + b < c

 All permutations of a + b = c

 All permutations of a = b and a + b = c

 MAXINT values

 Non-integer inputs

EOT–16

Example implementation

class Triangle{
public Triangle(LineSegment a, LineSegment b,

 LineSegment c)
public boolean is_isosceles()
public boolean is_scalene()
public boolean is_equilateral()
public void draw()
public void erase()

}
class LineSegment {

public LineSegment(int x1, int y1,
 int x2, int y2)
}

EOT–17

Extra Tests

 Is the constructor correct?

 Is only one of the is_* methods true in every case?

 Do results repeat, e.g. when running is_scalene twice
or more?

 Results change after draw or erase?

 Segments that do not intersect or form an interior triangle

EOT–18

Inheritance tests

 Tests that apply to all Figure
objects must still work for
Triangle objects

 Tests that apply to all
ClosedFigure objects must still
work for Triangle objects

Triangle

Figure

ClosedFigure

EOT–19

Testing limits

 Dijkstra:
“Program testing can be used to show the
presence of defects, but never their absence”

 It is impossible to fully test a software system in a
reasonable amount of time or money

 When is testing complete?
 When you run out of time or money.

EOT–20

The infinite set of tests

 There are enormous numbers of possible tests. To test
everything, you would have to:

 Test every possible input to every variable.

 Test every possible combination of inputs to every combination of
variables.

 Test every possible sequence through the program.

 Test every hardware / software configuration, including
configurations of servers not under your control.

 Test every way in which any user might try to use the program.

EOT–21

Testing valid inputs (an example)

 MASPAR is a parallel computer used for mission-critical and life-
critical applications.

 To test the 32-bit integer square root function, all 4,294,967,296
values were checked. This took 6 minutes.

 There were 2 (two) errors, neither of them near any boundary.
 The underlying error was that a bit was sometimes mis-set, but

in most error cases, there was no effect on the final calculated
result.

 Without an exhaustive test, these errors probably wouldn’t have
shown up.

 What about the 64-bit integer square root? How could we find the
time to run all of these?

EOT–22

Testing valid inputs

 There were 39,601 possible valid inputs in ADDER

 In the Triangle example, assuming only integers from 1 to
10, there are 104 possibilities for a segment, and 1012 for
a triangle. Testing 1000 cases per second, you would
need 317 years!

EOT–23

Testing invalid inputs

 The error handling aspect of the system must also be
triggered with invalid inputs

 Anything you can enter with a keyboard must be tried.
Letters, control characters, combinations of these,
question marks, too long strings etc…

EOT–24

Testing edited inputs

 Need to test that editing works (if allowed by the spec)

 Test that any character can be changed into any other

 Test repeated editing
 Long strings of key presses followed by <Backspace> have

been known to crash buffered input systems

EOT–25

Testing input timing variations

 Try entering the data very quickly, or very slowly.

 Do not wait for the prompt to appear

 Enter data before, after, and during the processing of
some other event, or just as the time-out interval for this
data item is about to expire.

 Race conditions between events often leads to bugs that
are difficult to reproduce

EOT–26

Combination testing

 Example 1: a program crashed when attempting to print preview
a high resolution (back then, 600x600 dpi) output on a high
resolution screen. The option selections for printer resolution and
screen resolution were interacting.

 Example 2: American Airlines couldn’t print tickets if a string
concatenating the fares associated with all segments was too long.

 Example 3: Memory leak in WordStar if text was marked
Bold/Italic (rather than Italic/Bold)

EOT–27

What if you don’t test all inputs?

 Based on the test cases chosen, an implementation that
passes all tests but fails on a missed test case can be
created.

 If it can be done on purpose, it can be done accidentally
too.
 A word processor had trouble with large files that were

fragmented on the disk (would suddenly lose whole
paragraphs)

EOT–28

Testing all paths in the system

A

B

C

D

E

F

G

H

I

X EXIT

< 20 times
through the
loop

Here’s an example that shows that there are too many paths to
test in even a fairly simple program. This is from Myers, The Art
of Software Testing.

EOT–29

Number of paths

 One path is ABX-Exit. There are 5 ways to get to X
and then to the EXIT in one pass.

 Another path is ABXACDFX-Exit. There are 5 ways to
get to X the first time, 5 more to get back to X the
second time, so there are 5 x 5 = 25 cases like this.

 There are 51 + 52 + ... + 519 + 520 = 1014 = 100
trillion paths through the program.

 It would take only a billion years to test every path (if
one could write, execute and verify a test case every
five minutes).

EOT–30

Further difficulties for testers

 Testing cannot verify requirements. Incorrect or
incomplete requirements may lead to spurious tests

 Bugs in test design or test drivers are equally difficult to
find

 Expected output for certain test cases might be difficult to
determine

EOT–31

Conclusion

 Complete testing is impossible
 There is no simple answer for this.

 There is no simple, easily automated, comprehensive oracle
to deal with it.

 Therefore testers live and breathe tradeoffs.

EOT–32

Complete testing

 What do we mean by "complete testing"?
 Complete "coverage": Tested every line/path?
 Testers not finding new bugs?
 Test plan complete?

 Complete testing must mean that, at the end of testing,
you know there are no remaining unknown bugs.

 After all, if there are more bugs, you can find them if you
do more testing. So testing couldn't yet be "complete."

EOT–33

Complete coverage?

 What is coverage?
 Extent of testing of certain attributes or pieces of the program,

such as statement coverage or branch coverage or condition
coverage.

 Extent of testing completed, compared to a population of possible
tests.

 Why is complete coverage impossible?
 Domain of possible inputs is too large.

 Too many possible paths through the program.

EOT–34

Achieving high coverage

 Coverage measurement is a good tool to show
 how far you are from complete testing.

 But it’s a poor tool for investigating how close you are to
completion.

EOT–35

Testers live and breathe tradeoffs

 The time needed for test-related tasks is infinitely larger
than the time available.

 Example: Time you spend on
 Analyzing, troubleshooting, and effectively describing a

failure

 Is time no longer available for
 Designing tests Documenting tests
 Executing tests Automating tests
 Reviews, inspections Training other staff

