
02/02/2011

1

Double-Ended Queues

CSE 2011

Winter 2011

12 February 2011

2

Double-Ended Queue ADT

� Deque (pronounced “deck”)

� Allows insertion and deletion at both the front and the
rear of the queue

� Deque ADT: operations

addFirst(e): insert e at the beginning of the deque

addLast(e): insert e at the end of the deque

removeFirst(): remove and return the first element

removeLast(): remove and return the last element

getFirst(): return the first element

getLast(): return the last element

isEmpty(): return true if deque is empty; false otherwise

size(): return the number of objects in the deque

02/02/2011

2

3

Implementation Choices

� Arrays

�Similar to queue implementation (homework)

� Linked lists: singly or doubly linked?

�Removing at the tail costs θ(n)

4

removeLast() and addLast()

02/02/2011

3

5

Implementing Stacks and Queues

with Deques

6

The Adapter Pattern

� Using methods of one class to implement methods of

another class

� Example: using Deque to implement Stack and Queue

02/02/2011

4

7

Extendable Arrays

CSE 2011

8

Extendable Array Implementation

When push() is called and an overflow occurs (n = N):

� Allocate a new array T of capacity 2N

� Copy contents of the original array V into the first half of

the new array T

� Set V = T

� Perform the insertion using new array V

� Note: when the number of elements in the list goes

below a threshold (e.g., N/4), shrink the array by half the

current size N of the array.

02/02/2011

5

9

Time Analysis

� “push”: inserting an element to be the last element of a
list (or top of a stack)

� add(e) {

if (full stack) then extend the array;

“push” e to new array;

}

� Proposition 1:

Let S be a list implemented by means of an extendable
array V as described before. The total time to perform a
series of n “push” operations in S, starting from S being
empty and V having size N = 1, is O(n).

Pseudo-code

int [] V = new int[1]; N = 1; top = –1;

input element e;

for(i = 0; i < n; i++) {

if(stack is full) {

allocate a new array T of capacity 2N;

copy V[i] to T[i] for i = 0, 1, G, N–1; // a for loop

set V = T;

N = N * 2;

}

top = top + 1;

V[top] = e;

input next element e;

}
10

02/02/2011

6

11

Time Analysis (2)

1. All array extensions: O(?)

� Allocate a new array T of capacity 2N

� Copy V[i] to T[i] for i = 0, 1, G, N–1

� Set V = T

2. All “push” operations take O(n) (each “push” takes O(1))

Running time of all array extensions:

� If the array is extended k times, then n = 2k

� The total number of copies is:

1 + 2 + 4 + 8 + G + 2k–1 = 2k – 1 = n – 1 = O(n)

Total = O(n)+ O(n) = O(n)

12

Increment Strategies

� java.util.ArrayList and java.util.Vector use extendable
arrays.

� capacityIncrement determines how the array grows:

capacityIncrement = 0: array size doubles

capacityIncrement = c > 0: array adds c new cells

� Proposition 2:

If we create an initially empty java.util.Vector object with
a fixed positive capacityIncrement value, then performing
a series of n push operations on this vector takes ΩΩΩΩ(n2)
time.

� ΩΩΩΩ(n2): takes at least time n2

02/02/2011

7

13

Increment Strategies (2)

1. Array extensions: O(?)

� Let a be the initial size of array V

� Let capacityIncrement = c

� If the array is extended k times then n = a + ck

� The total number of copies is:

(a) + (a+c) + (a+2c) + G + (a+(k–1)c) =

ak + c(1+2+G+(k–1)) = ak + ck(k–1)/2 = θ(k2) = θ(n2)

� We infer Ω(n2) from θ(n2)

2. All “push” operations take O(n) (each “push” takes O(1))

Which is the better increment strategy?

Next time ...

� Trees (chapter 7)

� Assignment 1

�We discuss solutions in class.

�Solutions will not be posted.

14

