31 January 2011

Queues (5.2)

CSE 2011
Winter 2011

Announcements

York Programming Contest
https://wiki.cse.yorku.ca/project/ ACM/

Link also available from the “News and

Lecture Notes” page

Midterm test: tentative date
March 1, 13:00-14:20 (80 minutes)

31/01/2011

Queues: FIFO

Insertions and removals follow the Fist-In First-Out rule:
— Insertions: at the rear of the queue
— Removals: at the front of the queue

Applications, examples:

— Waiting lists

— Access to shared resources (e.g., printer)
— Multiprogramming (UNIX)

Queue ADT

Data stored: arbitrary objects

Operations:

— enqueue(object): inserts an element at the end of the
queue

— object dequeue(): removes and returns the element at
the front of the queue

— object front(): returns the element at the front
without removing it

Execution of dequeue() or front() on an empty queue

— throws EmptyQueueException

Another useful operation:

— boolean isEmpty(): returns true if the queue is empty;
false otherwise.

31/01/2011

Queue Operations

enqueue(object)
object dequeue()
object front()
boolean isEmpty()

int size(): returns the
number of elements in
the queue

Any others? Depending
on implementation and/or
applications

public interface Queue {
public int size();

public boolean isEmpty();
public Object front()

throws
EmptyQueueException;

public Object dequeuel()
throws
EmptyQueueException;
public void enqueue (Object
obj);
}

Queue Example

Operation Output
enqueue(5) -
enqueue(3) -
dequeue() 5
enqueue(7) -
dequeue() 3
front() 7
dequeue() 7
dequeue() “error”
isEmpty() true
enqueue(9) -
enqueue(7) -
size() 2
enqueue(3) -
enqueue(5) -
dequeue() 9

6,7
6,7
9,7, 3)
(9,7.3,5)
(7,3.5)

Queues

31/01/2011

31/01/2011

Array-based Implementation

An array Q of maximum size N

We need to decide where the front and rear are.
How to enqueue, dequeue?

Running time of enqueue?

Running time of dequeue?

Array-based Implementation (2)

An array Q of maximum size N

Need to keep track the front and rear of the queue:
f: index of the front object

r. index immediately past the rear element

Note: Q[r] is empty (does not store any object)

0 [TTI1I11

Array-based Implementation (3)

Front element: Q[f]
Rear element: Q[r— 7]
Queue is empty: f=r
Queue size: r—f

How to dequeue?
How to enqueue?

¢ 11117171
012 ¢

Dequeue() and Enqueue()

Algorithm dequeue():

if (IsEmpty())

throw QueueEmptyException;
temp = QI[f];

f=Ff+1;

return temp;

Algorithm enqueue(object):
if (r==N)

throw QueueFullException;
Q[r] = object;
r=r+1,;

UEI;ZIID

I,

What if r== N and Q[0...3] cells are empty?

31/01/2011

Circular Array Implementation

¢ LLl] I
0 1

[TTTTTT]

-

/

Analogy:
A snake chases its tail

Front element: Q[f]
Rear element: Q[r— 1]

Incrementing f, r
f=(f+1)mod N
r=(r+1)modN
mod: Java operator “%”

Circular Array Implementation (2)

¢ L1 |

[TTT1 |

2 f

Queue size = To distinguish between
(N=f+r)ymod N empty and full states, we
_ verify this impose a constraint: Q

Queue is empty: f=r
When r reaches and

overlaps with f, the queue
is full: r="7F

can hold at most N — 1
objects (one cell is
wasted). So r never
overlaps with f, except
when the queue is empty.

12

31/01/2011

Pseudo-code

Algorithm enqueue(object):
if (size() == N—-1)

throw QueueFullException;
Q[r] = object;
r=(r+1)modN;

Algorithm dequeue():

if (IsEmpty())

throw QueueEmptyException;
temp = Q[f];

f=(f+1)mod N,

return temp;

Pseudo-code (2)

Algorithm front():
if (IsEmpty())

throw QueueEmptyException;

return Q[f];

Algorithm isEmpty():
return (f =r);

Algorithm size():
return (N — f+ r) mod N);

Homework: Remove the

constraint “Q can hold at
most N — 1 objects”. That
is, Q can store upto N
objects. Implement the
Queue ADT using a
circular array.

Note: there is no
corresponding built-in
Java class for queue ADT

14

31/01/2011

Analysis of Circular Array Implementation

Performance
Each operation runs in O(1) time

Limitation
The maximum size N of the queue is fixed
How to determine N?

Alternatives?
Extendable arrays
Linked lists (singly or doubly linked???)

Singly or Doubly Linked?

Singly linked list Doubly linked list

public static class Node public static class DNode

{ {
private Object data;
private Node next;

}

private Object data;
private Node prev;
private Node next;

}

Nleeds less space. Better running time in many
Simpler code in some cases. cases (discussed before).
Insertion at tail takes O(n).

31/01/2011

Implementing a Queue with a Singly
Linked List

“head fal
LY .

L L)
ey [~ -2

TR T

{ Rome | [Seatle | (Taronto)

Head of the list = front of the queue (enqueue)
Tail of the list = rear of the queue (dequeue)
Is this efficient?

dequeue(): Removing at the Head

(3 Lt
"

a A
Lo ot e [o=
e e e

= achvance lbead reference

[L
iy [- A

L il [efw] 8 o 4 [H—=@ | Running time = ?
(Bt)t (o) (St) (et)

= imeecting at the hesd iz just as ensy

31/01/2011

31/01/2011

enqueue(): Inserting at the Tail

toenteancwnode 0
Basd e

5 e oy [
[twl s [[(o e

S L R W

CoFowe | [Seilé | | Tomnsin | il i':l:l'll_l'___

= chair il and move e Lol felerence

g il

L A
|- -I |-| iy |- - |-]I.-|-. .._..'l -

Running time = ?

. I - . (8
| oo | Sammls f Trmmio Zumk]
* how albout removing st the sl 7 19

Method enqueue() in Java

public void enqueue(Object obj) {
Node node = new Node();
node.setElement(obj);
node.setNext(null); // node will be new tail node

if (size == 0)

head = node; /I special case of a previously empty queue
else

tail.setNext(node); // add node at the tail of the list
tail = node; /[update the reference to the tail node
size++;

20

10

Method dequeue() in Java

public Object dequeue() throws QueueEmptyException {
Object obj;
if (size == 0)
throw new QueueEmptyException("Queue is empty.");
obj = head.getElement();
head = head.getNext();
size—;
if (size == 0)
tail = null; // the queue is now empty
return obj;

21

Analysis of Implementation with Singly-
Linked Lists

Each methods runs in O(1) time

Note: Removing at the tail of a singly-linked list requires
O(n) time

Comparison with array-based implementation:

No upper bound on the size of the queue (subject to
memory availability)

More space used per element (next pointer)

Implementation is more complicated (pointer
manipulations)

Method calls consume time (setNext, getNext, etc.)

22

31/01/2011

11

Next time ...

Double-ended Queues (Deques) (5.3)

23

31/01/2011

12

