
31/01/2011

1

1

Queues (5.2)

CSE 2011

Winter 2011

31 January 2011

Announcements

�York Programming Contest

�https://wiki.cse.yorku.ca/project/ACM/

�Link also available from the “News and 

Lecture Notes” page

�Midterm test: tentative date

�March 1, 13:00-14:20 (80 minutes)

2



31/01/2011

2

3

Queues: FIFO

� Insertions and removals follow the Fist-In First-Out rule:

– Insertions: at the rear of the queue

– Removals: at the front of the queue

� Applications, examples:

– Waiting lists

– Access to shared resources (e.g., printer)

– Multiprogramming (UNIX)

4

Queue ADT

� Data stored: arbitrary objects

� Operations:

– enqueue(object): inserts an element at the end of the 
queue

– object dequeue(): removes and returns the element at 
the front of the queue

– object front(): returns the element at the front
without removing it

� Execution of dequeue() or front() on an empty queue

→ throws EmptyQueueException

� Another useful operation:

– boolean isEmpty(): returns true if the queue is empty; 
false otherwise.



31/01/2011

3

5

Queue Operations

� enqueue(object) 

� object dequeue()

� object front()

� boolean isEmpty()

� int size(): returns the 
number of elements in 
the queue

� Any others? Depending 
on implementation and/or 
applications

public interface Queue {

public int size();

public boolean isEmpty();

public Object front()

throws   
EmptyQueueException;

public Object dequeue()

throws
EmptyQueueException;

public void enqueue (Object 
obj);

}

Queues 6

Queue Example

Operation Output Q 

enqueue(5) – (5)

enqueue(3) – (5, 3)

dequeue() 5 (3)

enqueue(7) – (3, 7)

dequeue() 3 (7)

front() 7 (7)

dequeue() 7 ()

dequeue() “error” ()

isEmpty() true ()

enqueue(9) – (9)

enqueue(7) – (9, 7)

size() 2 (9, 7)

enqueue(3) – (9, 7, 3)

enqueue(5) – (9, 7, 3, 5)

dequeue() 9 (7, 3, 5)



31/01/2011

4

Array-based Implementation

� An array Q of maximum size N

� We need to decide where the front and rear are.

� How to enqueue, dequeue?

� Running time of enqueue?

� Running time of dequeue?

7

8

Array-based Implementation (2)

� An array Q of maximum size N

� Need to keep track the front and rear of the queue:

f: index of the front object

r: index immediately past the rear element

� Note: Q[r] is empty (does not store any object)



31/01/2011

5

9

Array-based Implementation (3)

� Front element: Q[f] 

� Rear element: Q[r – 1] 

� Queue is empty: f = r

� Queue size: r – f

� How to dequeue?

� How to enqueue?

10

Dequeue() and Enqueue()

Algorithm dequeue():

if (isEmpty())

throw QueueEmptyException;

temp = Q[f];

f = f + 1;

return temp;

Algorithm enqueue(object):

if (r == N)

throw QueueFullException;

Q[r] = object;

r = r + 1;

What if r == N and Q[0N3] cells are empty?



31/01/2011

6

11

Circular Array Implementation

� Analogy:

A snake chases its tail

� Front element: Q[f] 

Rear element: Q[r – 1]

� Incrementing f, r

f = (f + 1) mod N

r = (r + 1) mod N

mod: Java operator “%”

12

Circular Array Implementation (2)

� Queue size =

(N – f + r) mod N

→ verify this

� Queue is empty: f = r

� When r reaches and 
overlaps with f, the queue 
is full: r = f

� To distinguish between 
empty and full states, we 
impose a constraint: Q
can hold at most N – 1 
objects (one cell is 
wasted). So r never 
overlaps with f, except 
when the queue is empty.



31/01/2011

7

13

Pseudo-code

Algorithm enqueue(object):

if (size() == N – 1)

throw QueueFullException;

Q[r] = object;

r = (r + 1) mod N;

Algorithm dequeue():

if (isEmpty())

throw QueueEmptyException;

temp = Q[f];

f = (f + 1) mod N;

return temp;

14

Pseudo-code (2)

Algorithm front():

if (isEmpty())

throw QueueEmptyException;

return Q[f];

Algorithm isEmpty():

return (f = r);

Algorithm size():

return ((N – f + r) mod N);

Homework: Remove the 

constraint “Q can hold at 

most N – 1 objects”.  That 

is, Q can store up to N

objects.  Implement the 

Queue ADT using a 

circular array.

Note: there is no 

corresponding built-in 

Java class for queue ADT



31/01/2011

8

15

Analysis of Circular Array Implementation

Performance

� Each operation runs in O(1) time

Limitation

� The maximum size N of the queue is fixed

� How to determine N?

� Alternatives?

�Extendable arrays

�Linked lists (singly or doubly linked???)

16

Singly or Doubly Linked?

� Singly linked list

public static class Node

{

private Object data;

private Node  next;

}

� Needs less space.

� Simpler code in some cases.

� Insertion at tail takes O(n).

� Doubly linked list

public static class DNode

{

private Object data;

private Node  prev;

private Node next;

}

� Better running time in many 

cases (discussed before).



31/01/2011

9

17

Implementing a Queue with a Singly 

Linked List

� Head of the list = front of the queue (enqueue)

� Tail of the list = rear of the queue (dequeue)

� Is this efficient?

18

dequeue(): Removing at the Head

Running time = ?



31/01/2011

10

19

enqueue(): Inserting at the Tail

Running time = ?

20

Method enqueue() in Java

public void enqueue(Object obj) { 

Node node = new Node(); 

node.setElement(obj); 

node.setNext(null); // node will be new tail node 

if (size == 0) 

head = node; // special case of a previously empty queue 

else 

tail.setNext(node); // add node at the tail of the list 

tail = node; // update the reference to the tail node 

size++; 

} 



31/01/2011

11

21

Method dequeue() in Java

public Object dequeue() throws QueueEmptyException { 

Object obj; 

if (size == 0) 

throw new QueueEmptyException("Queue is empty."); 

obj = head.getElement(); 

head = head.getNext(); 

size––; 

if (size == 0) 

tail = null; // the queue is now empty 

return obj; 

} 

22

Analysis of Implementation with Singly-

Linked Lists

� Each methods runs in O(1) time

� Note: Removing at the tail of a singly-linked list requires 
θ(n) time

Comparison with array-based implementation:

� No upper bound on the size of the queue (subject to 
memory availability)

� More space used per element (next pointer)

� Implementation is more complicated (pointer 
manipulations)

� Method calls consume time (setNext, getNext, etc.)



31/01/2011

12

23

Next time N

� Double-ended Queues (Deques) (5.3)


