
26/01/2011

1

26 January 2011 1

Stacks (5.1)

CSE 2011

Winter 2011

Stacks 2

Abstract Data Types (ADTs)

� An abstract data 
type (ADT) is an 
abstraction of a 
data structure

� An ADT 
specifies:
�Data stored

�Operations on the 
data

�Error conditions 
associated with 
operations

� Example: ADT modeling a 

simple stock trading system

�The data stored are buy/sell 

orders

�The operations supported are

�order buy(stock, shares, price)

�order sell(stock, shares, price)

� void cancel(order)

�Error conditions:

�Buy/sell a nonexistent stock

�Cancel a nonexistent order



26/01/2011

2

3

Stacks: LIFO

� Insertions and deletions follow the Last-In First-Out rule

� Example applications:

– Undo operation in a text editor

– History of visited web pages

– Sequence of method calls in Java

Stacks 4

Method Stack in the JVM

� The Java Virtual Machine 
(JVM) keeps track of the chain 
of active methods with a stack

� When a method is called, the 
JVM pushes on the stack a 
frame containing
� Local variables and return value

� Program counter, keeping track of 
the statement being executed 

� When a method ends, its frame 
is popped from the stack and 
control is passed to the method 
on top of the stack

� Allows for recursion

main() {

int i = 5;

foo(i);

}

foo(int j) {

int k;

k = j+1;

bar(k);

}

bar(int m) {

…

}

bar

PC = 1

m = 6

foo

PC = 3

j = 5

k = 6

main

PC = 2

i = 5



26/01/2011

3

5

Stack ADT

� Data stored: arbitrary objects

� Operations:

– push(object): inserts an element

– object pop(): removes and returns the last     

inserted element

� Other useful operations:

– object top(): returns the last inserted element 

without removing it

6

Error Conditions

� push(object) 

� object pop()

� object top()

� Exceptions are thrown when an operation cannot be 

executed.

� Execution of pop() or top() on an empty stack

→ throws EmptyStackException.

� Another useful operation:

– boolean isEmpty(): returns true if the stack is empty;

false otherwise.



26/01/2011

4

7

Stack Operations

� push(object) 

� object pop()

� object top()

� boolean isEmpty()

� Still another useful operation:

int size(): returns the number of elements in the stack

� Any others?

Depending on implementation

Stacks 8

Stack Interface in Java

� Java interface 
corresponding to 
our Stack ADT

� Requires the 
definition of class 
EmptyStackException

� Different from the 
built-in Java class 
java.util.Stack

public interface Stack {

public int size();

public boolean isEmpty();

public Object top()

throws EmptyStackException;

public void push(Object o);

public Object pop()

throws EmptyStackException;

}



26/01/2011

5

9

Array-based Implementation

� An array S of maximum size N

� A variable t that keeps track of the top element in array S

�How to initialize t?

� Top element: S[t]

� push( ), pop( ): how to update t?

� Stack is empty, isEmpty( ): ?

� Number of elements in the stack, size(): ?

10

Pseudo-code

Algorithm size():

return (t + 1);

Algorithm isEmpty():

return (t < 0);

Algorithm top():

if (isEmpty())

throw StackEmptyException;

return S[t];

Algorithm pop():

if (isEmpty())

throw StackEmptyException;

temp = S[t];

t = t – 1;

return temp;

Optimization: set S[t] to null

before decrementing t.

Homework: implement pop() 

without any temp variable.



26/01/2011

6

11

Method push()

Algorithm push(object):

t = t + 1;

S[t] = object;

� The array may become full 

� push() method will then 
throw a FullStackException

� Limitation of array-based 
implementation

� One solution: extend the 
stack

Algorithm push(object):

if (size() == N)

throw FullStackException;

t = t + 1;

S[t] = object;

Stacks 12

Array-based Stack in Java

public class ArrayStack

implements Stack {

// holds the stack elements 

private Object S[ ];

// index to top element

private int top = -1;

// constructor

public ArrayStack(int capacity) {

S = new Object[capacity]);

}

public Object pop()

throws EmptyStackException {

if isEmpty()

throw new EmptyStackException

(“Empty stack: cannot pop.”);

Object temp = S[top];

// facilitates garbage collection 

S[top] = null;

top = top – 1;

return temp;

}



26/01/2011

7

13

Performance of Array Implementation

� Each operation runs in O(1) time

(no loops, no recursion)

� Array-based implementation is simple, efficient, 
but J

� The maximum size N of the stack is fixed

� How to determine N? Not easy!

� Alternatives?
�Extendable arrays

�Linked lists (singly or doubly linked???)

Linked List Implementation

� Singly or doubly linked list?

� Where should the “top” be, head or tail?

14

A B C D

∅∅∅∅



26/01/2011

8

15

push() Method

pop() Method

16



26/01/2011

9

17

Analysis of Linked List Implementation

� Space usage: O(n) 

n = number of elements in the stack

� Each operation runs in O(1) time

� No limit on the stack size, subject to available memory

(run-time error OutOfMemoryError)

� Java code: textbook, p. 212 

18

Homework

� List-based and array-based operations all run in O(1) 

time.  List-based implementation imposes no limit on the 

stack size, while array-based implementation does. Is 

list-based implementation better?

� Can we perform push() and pop() at the tail of the linked 

list?  Analyze the running time in this case.

� Study the linked list implementation of stacks in Java on 

p. 212.



26/01/2011

10

More Applications of Stacks

� Reversing an array using a stack (5.1.4)

� Matching parentheses, brackets, and quotes in 

Java files (5.1.5)

19

Next time ...

�Queues (5.2)

20


