
1/24/2011

1

24 January 2011 1

More on Sorting

CSE 2011

Winter 2011

2

When to use which sorting algorithm?

� Large arrays: merge sort, quick sort.

� Small arrays: insertion sort, selection sort.

�Recursion is expensive.

� Merge sort or quick sort in an average case?

�Cost of comparing elements

�Cost of moving/switching elements

1/24/2011

2

3

Merge Sort or Quick Sort?

Merge sort
� Lowest number of

comparisons among popular
algorithms

� Lots of data
movements/copying (merging)

Java

� Generic sort uses Comparator

⇒ comparison is expensive.

� Moving is cheap (uses
“pointers” rather than copies of
objects).

Quick sort
� More comparisons

� Fewer data movements

C++

� Copying large objects is
expensive.

� Comparison is cheap (compiler
does inline optimization).

Java

� Used for primitive types
(inexpensive comparisons)

4

Lower Bound for Sorting

� Merge sort and heap sort (discussed later)

�worst-case running time is O(N log N)

� Are there better algorithms? No.

� We need to prove that any sorting algorithm

based on only comparisons takes Ω(N log N)

comparisons in the worst case (worse-case

input) to sort N elements.

� We will prove this after learning “Trees”.

1/24/2011

3

5

Linear Time Sorting (O(N))

CSE 2011

6

Linear Time Sorting

� Can we do better (linear time algorithm) if the

input has special structure (e.g., uniformly

distributed, every number can be represented by

d digits)? Yes.

� Counting sort, radix sort, bucket sort

1/24/2011

4

7

Bucket Sort

� Given an integer array A of size N,

� Assume that all elements in A have values < m.

� Example: sort a list of students by grades: 9

(A+), 8 (A), 7 (B+), 6 (B), 5, 4, 3, 2, 1, 0.

� Create an array B of size M. Each entry B[i] is

considered a “bucket”.

� For each element A[i], “throw” the element into

bucket B[A[i]].

8

Bucket Sort: Example

� Each bucket contains

more than one key

values.

� After all inputs are thrown

into the buckets, each

bucket will be sorted

(e.g., using insertion

sort).

1/24/2011

5

Bucket Sort: Running Time

� Assume there are m buckets.

� Assume uniform distribution of elements into buckets.

� Then the bucket size is k ≅ N / m.

� Algorithm:

�Create m buckets.

�“Throw” N elements into the appropriate buckets.

�Insertion sort each bucket.

�Concatenate the sorted lists.

9

Bucket Sort: Running Time (2)

� Algorithm:

�Create m buckets ⇒ O(m)

�“Throw” N elements into the buckets ⇒ O(N)

�Insertion sort each bucket ⇒ O(k2) x m = O(N2 / m)

�Concatenate the sorted lists ⇒ O(N)

� Total = O(N2 / m) + O(N) + O(m)

� If m = Θ(N), e.g., m = N/100, then the running time of

bucket sort is O(N).

10

1/24/2011

6

11

Next time H

� Arrays (review)

� Linked Lists (3.2, 3.3)

