More on Sorting

CSE 2011
Winter 2011

24 January 2011 1

When to use which sorting algorithm?

Large arrays: merge sort, quick sort.

Small arrays: insertion sort, selection sort.
Recursion is expensive.

Merge sort or quick sort in an average case?
Cost of comparing elements
Cost of moving/switching elements

1/24/2011

Merge Sort or Quick Sort?

Merge sort

Lowest number of
comparisons among popular
algorithms

Lots of data
movements/copying (merging)

Java
Generic sort uses Comparator
= comparison is expensive.

Moving is cheap (uses
“pointers” rather than copies of
objects).

Quick sort
More comparisons
Fewer data movements

C++
Copying large objects is
expensive.

Comparison is cheap (compiler
does inline optimization).

Java

Used for primitive types
(inexpensive comparisons)

Lower Bound for Sorting

Merge sort and heap sort (discussed later)
worst-case running time is O(N log N)
Are there better algorithms? No.

We need to prove that any sorting algorithm
based on only comparisons takes Q(N log N)
comparisons in the worst case (worse-case

input) to sort N elements.
We will prove this after learning “Trees”.

1/24/2011

1/24/2011

Linear Time Sorting (O(N))

CSE 2011

Linear Time Sorting

Can we do better (linear time algorithm) if the
input has special structure (e.g., uniformly
distributed, every number can be represented by
d digits)? Yes.

Counting sort, radix sort, bucket sort

Bucket Sort

Given an integer array A of size N,
Assume that all elements in A have values < m.

Example: sort a list of students by grades: 9
(A+), 8 (A), 7 (B+),6(B),5,4,3,2,1,0.
Create an array B of size M. Each entry BJi] is
considered a “bucket”.

For each element AJi], “throw” the element into
bucket B[A[i]].

Bucket Sort: Example

Each bucket contains o5 35 3 49 9 37 31 43
more than one key
values. [FBJS ["

2024

After all inputs are thrown
into the buckets, each
bucket will be sorted 10-1% 30-25 iy

(e.g., using insertion r T[”)‘ ,,ig !

sort).
1 37 43 49

1/24/2011

Bucket Sort: Running Time

Assume there are m buckets.
Assume uniform distribution of elements into buckets.
Then the bucket size is k= N/ m.
Algorithm:
Create m buckets.
“Throw” N elements into the appropriate buckets.
Insertion sort each bucket.
Concatenate the sorted lists.

Bucket Sort: Running Time (2)

Algorithm:
Create m buckets = O(m)
“Throw” N elements into the buckets = O(N)
Insertion sort each bucket = O(k?) x m = O(N2/ m)
Concatenate the sorted lists = O(N)

Total = O(N2 / m) + O(N) + O(m)

If m = ®(N), e.g., m = N/100, then the running time of
bucket sort is O(N).

1/24/2011

1/24/2011

Next time ...

Arrays (review)
Linked Lists (3.2, 3.3)

