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Quick Sort

� Fastest known sorting algorithm in practice
� Average case: O(N log N)
� Worst case: O(N2)

�But the worst case can be made exponentially 
unlikely.

� Another divide-and-conquer recursive algorithm, 
like merge sort.
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Quick Sort: Main Idea

1. If the number of elements in S is 0 or 1, then 
return (base case).

2. Pick any element v in S (called the pivot).
3. Partition the elements in S except v into two 

disjoint groups:
1. S1 = {x ∈ S – {v} | x ≤ v}
2. S2 = {x ∈ S – {v} | x ≥ v}

4. Return {QuickSort(S1) + v + QuickSort(S2)}
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Quick Sort: Example
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Example of Quick Sort...
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Issues To Consider

� How to pick the pivot?
�Many methods (discussed later)

� How to partition?
�Several methods exist.

�The one we consider is known to give good results and 
to be easy and efficient.

�We discuss the partition strategy first.
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Partitioning Strategy

� For now, assume that pivot = A[(left+right)/2].
� We want to partition array A[left .. right].
� First, get the pivot element out of the way by 

swapping it with the last element (swap pivot and 
A[right]).

� Let i start at the first element and j start at the next-to-
last element (i = left, j = right – 1)

pivot i j

5 7 4 6 3 12 19 5 7 4 63 1219

swap
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Partitioning Strategy

� Want to have

� A[k] ≤ pivot, for k < i

� A[k] ≥ pivot, for k > j
� When i < j

� Move i right, skipping over elements smaller than the pivot

� Move j left, skipping over elements greater than the pivot

� When both i and j have stopped

�A[i] ≥ pivot
�A[j] ≤ pivot   ⇒ A[i] and A[j] should now be swapped

i j

5 7 4 63 1219

i j

5 7 4 63 1219

i j

≤ pivot ≥ pivot
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Partitioning Strategy (2)

� When i and j have stopped and i is to the left of j (thus 
legal)
�Swap A[i] and A[j]

� The large element is pushed to the right and the small element 
is pushed to the left

�After swapping
� A[i] ≤ pivot
� A[j] ≥ pivot

�Repeat the process until i and j cross

swap

i j

5 7 4 63 1219

i j

5 3 4 67 1219
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Partitioning Strategy (3)

� When i and j have crossed
�swap A[i] and pivot

� Result:
�A[k] ≤ pivot, for k < i
�A[k] ≥ pivot, for k > i

i j

5 3 4 67 1219

ij

5 3 4 67 1219

ij

5 3 4 6 7 12 19

swap A[i] and pivot

Break!



Picking the Pivot

�There are several ways to pick a pivot.

�Objective: Choose a pivot so that we will 
get 2 partitions of (almost) equal size.
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Picking the Pivot (2)

� Use the first element as pivot
� if the input is random, ok.
� if the input is presorted (or in reverse order)

�all the elements go into S2 (or S1).
� this happens consistently throughout the recursive 

calls.
� results in O(N2) behavior (we analyze this case later).

� Choose the pivot randomly
�generally safe,
�but random number generation can be expensive and 

does not reduce the running time of the algorithm.
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Picking the Pivot (3)

� Use the median of the array (ideal pivot)
�The N/2 th largest element
�Partitioning always cuts the array into roughly half
�An optimal quick sort (O(N log N))
�However, hard to find the exact median

� Median-of-three partitioning
�eliminates the bad case for sorted input.
�reduces the number of comparisons by 14%.
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Median of Three Method
� Compare just three elements: the leftmost, rightmost and center

� Swap these elements if necessary so that 
� A[left] = Smallest
� A[right] = Largest
� A[center]    = Median of three

� Pick A[center] as the pivot.
� Swap A[center] and A[right – 1] so that the pivot is at the second last 

position (why?)
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Median of Three: Example

pivot

5 6 4

6

3 12 192 13 6

5 6 4 3 12 192 6 13

A[left] = 2, A[center] = 13, 
A[right] = 6

Swap A[center] and A[right]

5 6 4 3 12 192 13

pivot

65 6 4 3 12192 13

Choose A[center] as pivot

Swap pivot and A[right – 1]

We only need to partition A[ left + 1, …, right – 2 ]. Why?

Quick Sort Summary

� Recursive case: QuickSort( a, left, right )
pivot = median3( a, left, right );
Partition a[left … right] into a[left … i-1], i, a[i+1 … right];
QuickSort( a, left, i-1 );
QuickSort( a, i+1, right );

� Base case: when do we stop the recursion?
�In theory, when left >= right.
�In practice, …
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Small Arrays

� For very small arrays, quick sort does not 
perform as well as insertion sort

� Do not use quick sort recursively for small arrays
�Use a sorting algorithm that is efficient for small 

arrays, such as insertion sort.

� When using quick sort recursively, switch to 
insertion sort when the sub-arrays have between 
5 to 20 elements (10 is usually good).
�saves about 15% in the running time.
�avoids taking the median of three when the sub-array 

has only 1 or 2 elements.
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Quick Sort: Pseudo-code

For small arrays

Recursion

Choose pivot

Partitioning
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Partitioning Part

� The partitioning code we just 
saw works only if pivot is picked 
as median-of-three. 
� A[left] ≤ pivot and A[right] ≥ pivot
� Need to partition only 

A[left + 1, …, right – 2]

� j will not run past the beginning
� because A[left] ≤ pivot

� i will not run past the end
� because A[right-1] = pivot

Homework

� Assume the pivot is chosen as the middle 
element of an array: pivot = a[(left+right)/2].

� Rewrite the partitioning code and the whole 
quick sort algorithm.
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Quick Sort Faster Than Merge Sort

� Both quick sort and merge sort take O(N log N) in the 
average case.

� But quick sort is faster in the average case:
�The inner loop consists of an increment/decrement (by 

1, which is fast), a test and a jump. 
�There is no extra juggling as in merge sort.

inner loop
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Analysis

Assumptions:
� A random pivot (no median-of-three partitioning)
� No cutoff for small arrays ( to make it simple)

1. If the number of elements in S is 0 or 1, then return 
(base case).

2. Pick an element v in S (called the pivot).
3. Partition the elements in S except v into two disjoint 

groups:
1. S1 = {x ∈ S – {v} | x ≤ v}
2. S2 = {x ∈ S – {v} | x ≥ v}

4. Return {QuickSort(S1) + v + QuickSort(S2)}
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Analysis (2)

� Running time
�pivot selection: constant time, i.e. O(1)
�partitioning: linear time, i.e. O(N)
�running time of the two recursive calls 

� T(N)= T(i) + T(N – i – 1) + cN
�i: number of elements in S1
�c is a constant
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Worst-Case Scenario

� What will be the worst case?
�The pivot is the smallest element, all the time
�Partition is always unbalanced
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Best-Case Scenario
� What will be the best case?

�Partition is perfectly balanced.
�Pivot is always in the middle (median of the array).

� T(N) = T(N/2) + T(N/2) + cN = 2T(N/2) + cN

� This recurrence is similar to the merge sort recurrence.
� The result is O(NlogN).
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Average-Case Analysis

� Assume that each of the sizes for S1 is equally 
likely ⇒ has probability 1/N.

� This assumption is valid for the pivoting and 
partitioning strategy just discussed (but may not 
be for some others),

� On average, the running time is O(N log N).
� Proof: pp 272–273, Data Structures and 

Algorithm Analysis by M. A. Weiss, 2nd edition
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Next time …

� Arrays (review)
� Linked Lists (3.2, 3.3)
� Comparing sorting algorithms
� Stacks, queues (Chapter 5)


