
20 January 2011 1

Quick Sort (11.2)

CSE 2011
Winter 2011

2

Quick Sort

� Fastest known sorting algorithm in practice
� Average case: O(N log N)
� Worst case: O(N2)

�But the worst case can be made exponentially
unlikely.

� Another divide-and-conquer recursive algorithm,
like merge sort.

3

Quick Sort: Main Idea

1. If the number of elements in S is 0 or 1, then
return (base case).

2. Pick any element v in S (called the pivot).
3. Partition the elements in S except v into two

disjoint groups:
1. S1 = {x ∈ S – {v} | x ≤ v}
2. S2 = {x ∈ S – {v} | x ≥ v}

4. Return {QuickSort(S1) + v + QuickSort(S2)}

4

Quick Sort: Example

5

Example of Quick Sort...

6

Issues To Consider

� How to pick the pivot?
�Many methods (discussed later)

� How to partition?
�Several methods exist.

�The one we consider is known to give good results and
to be easy and efficient.

�We discuss the partition strategy first.

7

Partitioning Strategy

� For now, assume that pivot = A[(left+right)/2].
� We want to partition array A[left .. right].
� First, get the pivot element out of the way by

swapping it with the last element (swap pivot and
A[right]).

� Let i start at the first element and j start at the next-to-
last element (i = left, j = right – 1)

pivot i j

5 7 4 6 3 12 19 5 7 4 63 1219

swap

8

Partitioning Strategy

� Want to have

� A[k] ≤ pivot, for k < i

� A[k] ≥ pivot, for k > j
� When i < j

� Move i right, skipping over elements smaller than the pivot

� Move j left, skipping over elements greater than the pivot

� When both i and j have stopped

�A[i] ≥ pivot
�A[j] ≤ pivot ⇒ A[i] and A[j] should now be swapped

i j

5 7 4 63 1219

i j

5 7 4 63 1219

i j

≤ pivot ≥ pivot

9

Partitioning Strategy (2)

� When i and j have stopped and i is to the left of j (thus
legal)
�Swap A[i] and A[j]

� The large element is pushed to the right and the small element
is pushed to the left

�After swapping
� A[i] ≤ pivot
� A[j] ≥ pivot

�Repeat the process until i and j cross

swap

i j

5 7 4 63 1219

i j

5 3 4 67 1219

10

Partitioning Strategy (3)

� When i and j have crossed
�swap A[i] and pivot

� Result:
�A[k] ≤ pivot, for k < i
�A[k] ≥ pivot, for k > i

i j

5 3 4 67 1219

ij

5 3 4 67 1219

ij

5 3 4 6 7 12 19

swap A[i] and pivot

Break!

Picking the Pivot

�There are several ways to pick a pivot.

�Objective: Choose a pivot so that we will
get 2 partitions of (almost) equal size.

12

Picking the Pivot (2)

� Use the first element as pivot
� if the input is random, ok.
� if the input is presorted (or in reverse order)

�all the elements go into S2 (or S1).
� this happens consistently throughout the recursive

calls.
� results in O(N2) behavior (we analyze this case later).

� Choose the pivot randomly
�generally safe,
�but random number generation can be expensive and

does not reduce the running time of the algorithm.

13

Picking the Pivot (3)

� Use the median of the array (ideal pivot)
�The N/2 th largest element
�Partitioning always cuts the array into roughly half
�An optimal quick sort (O(N log N))
�However, hard to find the exact median

� Median-of-three partitioning
�eliminates the bad case for sorted input.
�reduces the number of comparisons by 14%.

14

Median of Three Method
� Compare just three elements: the leftmost, rightmost and center

� Swap these elements if necessary so that
� A[left] = Smallest
� A[right] = Largest
� A[center] = Median of three

� Pick A[center] as the pivot.
� Swap A[center] and A[right – 1] so that the pivot is at the second last

position (why?)

15

Median of Three: Example

pivot

5 6 4

6

3 12 192 13 6

5 6 4 3 12 192 6 13

A[left] = 2, A[center] = 13,
A[right] = 6

Swap A[center] and A[right]

5 6 4 3 12 192 13

pivot

65 6 4 3 12192 13

Choose A[center] as pivot

Swap pivot and A[right – 1]

We only need to partition A[left + 1, …, right – 2]. Why?

Quick Sort Summary

� Recursive case: QuickSort(a, left, right)
pivot = median3(a, left, right);
Partition a[left … right] into a[left … i-1], i, a[i+1 … right];
QuickSort(a, left, i-1);
QuickSort(a, i+1, right);

� Base case: when do we stop the recursion?
�In theory, when left >= right.
�In practice, …

17

Small Arrays

� For very small arrays, quick sort does not
perform as well as insertion sort

� Do not use quick sort recursively for small arrays
�Use a sorting algorithm that is efficient for small

arrays, such as insertion sort.

� When using quick sort recursively, switch to
insertion sort when the sub-arrays have between
5 to 20 elements (10 is usually good).
�saves about 15% in the running time.
�avoids taking the median of three when the sub-array

has only 1 or 2 elements.

18

Quick Sort: Pseudo-code

For small arrays

Recursion

Choose pivot

Partitioning

19

Partitioning Part

� The partitioning code we just
saw works only if pivot is picked
as median-of-three.
� A[left] ≤ pivot and A[right] ≥ pivot
� Need to partition only

A[left + 1, …, right – 2]

� j will not run past the beginning
� because A[left] ≤ pivot

� i will not run past the end
� because A[right-1] = pivot

Homework

� Assume the pivot is chosen as the middle
element of an array: pivot = a[(left+right)/2].

� Rewrite the partitioning code and the whole
quick sort algorithm.

21

Quick Sort Faster Than Merge Sort

� Both quick sort and merge sort take O(N log N) in the
average case.

� But quick sort is faster in the average case:
�The inner loop consists of an increment/decrement (by

1, which is fast), a test and a jump.
�There is no extra juggling as in merge sort.

inner loop

22

Analysis

Assumptions:
� A random pivot (no median-of-three partitioning)
� No cutoff for small arrays (to make it simple)

1. If the number of elements in S is 0 or 1, then return
(base case).

2. Pick an element v in S (called the pivot).
3. Partition the elements in S except v into two disjoint

groups:
1. S1 = {x ∈ S – {v} | x ≤ v}
2. S2 = {x ∈ S – {v} | x ≥ v}

4. Return {QuickSort(S1) + v + QuickSort(S2)}

23

Analysis (2)

� Running time
�pivot selection: constant time, i.e. O(1)
�partitioning: linear time, i.e. O(N)
�running time of the two recursive calls

� T(N)= T(i) + T(N – i – 1) + cN
�i: number of elements in S1
�c is a constant

24

Worst-Case Scenario

� What will be the worst case?
�The pivot is the smallest element, all the time
�Partition is always unbalanced

25

Best-Case Scenario
� What will be the best case?

�Partition is perfectly balanced.
�Pivot is always in the middle (median of the array).

� T(N) = T(N/2) + T(N/2) + cN = 2T(N/2) + cN

� This recurrence is similar to the merge sort recurrence.
� The result is O(NlogN).

26

Average-Case Analysis

� Assume that each of the sizes for S1 is equally
likely ⇒ has probability 1/N.

� This assumption is valid for the pivoting and
partitioning strategy just discussed (but may not
be for some others),

� On average, the running time is O(N log N).
� Proof: pp 272–273, Data Structures and

Algorithm Analysis by M. A. Weiss, 2nd edition

27

Next time …

� Arrays (review)
� Linked Lists (3.2, 3.3)
� Comparing sorting algorithms
� Stacks, queues (Chapter 5)

