

Goals

- Divide-and-conquer approach
- Solving recurrences
- One more sorting algorithm

Merge Sort: Main Idea

Based on divide-and-conquer strategy

- Divide the list into two smaller lists of about equal sizes.
- Sort each smaller list recursively.
- Merge the two sorted lists to get one sorted list.

Questions:

- How do we divide the list? How much time needed?
- How do we merge the two sorted lists? How much time needed?

3

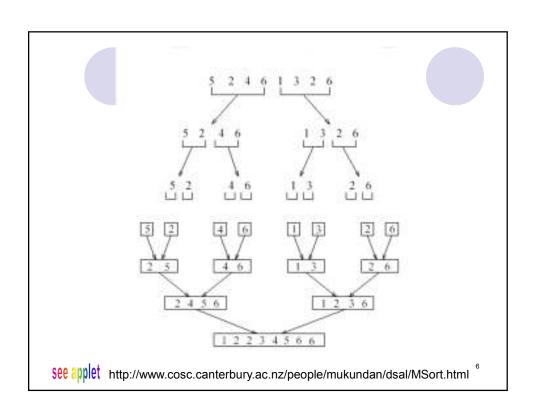
Dividing

- - akes O(1)
- If the input list is an array A[0..N-1]: dividing takes O(1) time:
 - O Represent a sub-array by two integers left and right.
 - To divide A[left .. right], compute center=(left+right)/2 and obtain A[left .. center] and A[center+1 .. right]
- If the input list is a linked list, dividing takes $\Theta(N)$ time:
 - Scan the linked list, stop at the LN/2 lth entry and cut the link.

Merge Sort: Algorithm

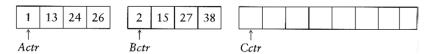
- Divide-and-conquer strategy
 - Orecursively sort the first half and the second half
 - omerge the two sorted halves together

```
void mergesort(int & A[], int left, int right)
{
         If (left < right ) {
            int center = (left + right) /2;
            mergesort(A, left, center);
            mergesort(A, center+1, right);
            merge(A, left, center+1, right);
}</pre>
```



Merging

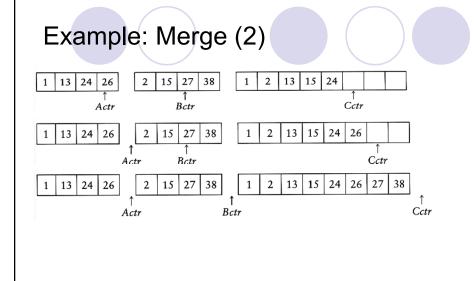
- Input: two sorted array A and B
- Output: an output sorted array C
- Three counters: Actr, Bctr, and Cctr
 - o initially set to the beginning of their respective arrays



- The smaller of A[Actr] and B[Bctr] is copied to the next entry in C, and the appropriate counters are advanced
- When either input list is exhausted, the remainder of the other list is copied to C.

7

Merge: Example 1 | 13 | 24 | 26 2 15 | 27 | 38 ActrBctr Cctr 1 | 13 | 24 | 26 2 | 15 | 27 | 38 2 Actr Bctr Cctr 2 | 13 13 | 24 15 | 27 Cctr Bctr Actr 2 | 15 | 27 | 38 2 | 13 | 15 13 24 26 Cctr Bctr Actr 2 | 13 | 15 | 24 1 | 13 | 24 | 26 15 27 Actr \dot{Bctr} Cctr



Merge: Java Code

- * Internal method that merges two sorted halves of a subarray. * @param a an array of Comparable items. * @param tmpArray an array to place the merged result. * @param leftPos the left-most index of the subarray. * @param rightPos the index of the start of the second half. * @param rightEnd the right-most index of the subarray. private static <AnyType extends Comparable<? super AnyType>>
 - void merge(AnyType [] a, AnyType [] tmpArray,
 int leftPos, int rightPos, int rightEnd) int leftEnd = rightPos - 1; int tmpPos = leftPos; int numElements = rightEnd - leftPos + 1;

```
// Main loop
   while( leftPos <= leftEnd && rightPos <=
     if( a[ leftPos ].compareTo( a[ rightPos ] ) <= 0
        tmpArray[ tmpPos++ ] = a[ leftPos++ ];
     else
        tmpArray[ tmpPos++ ] = a[ rightPos++ ];
   while( leftPos <= leftEnd ) // Copy rest of 1st half
     tmpArray[ tmpPos++ ] = a[ leftPos++ ];
   while( rightPos <= rightEnd )
                        // Copy rest of right half
     tmpArray[\ tmpPos++\ ] = a[\ rightPos++\ ];
   // Copy tmpArray back
   for( int i = 0; i < numElements; i++, rightEnd--)
     a[ rightEnd ] = tmpArray[ rightEnd ];
                                                   10
```

Merge: Analysis

- Running time analysis:
 - OMerge takes $O(m_1 + m_2)$, where m_1 and m_2 are the sizes of the two sub-arrays.
- Space requirement:
 - merging two sorted lists requires linear extra memory
 - additional work to copy to the temporary array and back

11

Analysis of Merge Sort

- Let T(N) denote the worst-case running time of mergesort to sort N numbers.
- Assume that N is a power of 2.
- Divide step: O(1) time
- Conquer step: 2 x T(N/2) time
- Combine step: O(N) time
- Recurrence equation:

$$T(1) = 1$$

 $T(N) = 2T(N/2) + N$

Solving the Recurrence

$$T(N) = 2T(\frac{N}{2}) + N$$

$$= 2(2T(\frac{N}{4}) + \frac{N}{2}) + N$$

$$= 4T(\frac{N}{4}) + 2N$$

$$= 4(2T(\frac{N}{8}) + \frac{N}{4}) + 2N$$

$$= 8T(\frac{N}{8}) + 3N = \cdots$$

$$= 2^k T(\frac{N}{2^k}) + kN$$

Since $N=2^k$, we have $k=log_2$ n

$$T(N) = 2^{k} T(\frac{N}{2^{k}}) + kN$$
$$= N + N \log N$$
$$= O(N \log N)$$

13

Next time ...

Quick Sort (11.2)