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Review – Part 1

CSE 2011

Winter 2011

130 March 2011

Algorithm Analysis

� Given an algorithm, compute its running time in 

terms of O, Ω, and Θ (if any).

�Usually the big-Oh running time is enough.

� Given f(n) = 5n + 10, show that f(n) is O(n).

�Find c and n0

� Compare the grow rates of 2 functions.

� Order the grow rates of several functions.

�Use slide 14.

�Use L’Hôpital’s rule.
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Running Times of Loops

Nested for loops:

� If the exact number of iterations of each loop is 

known, multiply the numbers of iterations of the 

loops.

� If the exact number of iterations of some loop is 

not known, “open” the loops and count the total 

number of iterations.
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Running Time of Recursive Methods

�Could be just a hidden “for" or “while” loop.

�See “Tail Recursion” slide.

�“Unravel” the hidden loop to count the number 

of iterations.

�Logarithmic

�Examples: binary search, exponentiation, GCD

�Solving a recurrence

�Example: merge sort, quick sort
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Recursion

Know how to write recursive functions/methods:

� Recursive call

�Adjusting recursive parameter(s) for each call

� Base case(s)

1. Use the definition (factorial, tree depth, height)

2. Cut the problem size by half (binary search), or 

by k elements at a time (sum, reversing arrays).

3. Divide and conquer (merge sort, quick sort)
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Sorting Algorithms

� Insertion sort

�Merge sort

�Quick sort

�Lower bound of sorting algorithms

�O(NlogN)

�When to use which sorting algorithm?

�Linear-time sorting (bucket sort)
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Running Time of Tree Methods

Most tree methods are recursive.

� Visualize the recursion trace.

� Count the number of nodes that were visited 

(processed) k.

� Compute the running time for processing each 

node O(m).

� If O(mv) ≠ O(mu), sum up the running times of 

the k nodes.

� Otherwise total running time = k ∗ O(m)
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Arrays and Linked Lists

Arrays

� A = B

� Cloning arrays

� Extendable arrays

� Strategies for 

extending arrays:

�doubling the size

�increment by k cells

Linked lists

� Singly linked

� Doubly linked

� Implementation

� Running times for 

insertion and deletion 

at the two ends.
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Running Times of Array and Linked 

List Operations

Operation

Array

unsorted

Array

sorted

DL list

unsorted

DL list

sorted

insert O(    ) O(    ) O(    ) O(    )

delete O(    ) O(    ) O(    ) O(    )

search O(    ) O(    ) O(    ) O(    )
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Stacks, Queues and Deques

�Operations

�Array implementation

�Linked list implementation

�Running times for each implementation

�Assignment 3 (deques)
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Trees

� Definitions, terminologies

� Traversal algorithms and applications

�Preorder

�Postorder

� Computing depth and height of a tree or node.
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Binary Trees

� Linked structure implementation

� Array implementation

� Traversal algorithms

�Preorder

�Postorder

�Inorder

� Properties: relationships between n, i, e, h.

� Definitions:

�complete binary tree

�full binary tree
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Linked Structure of Binary Trees 

� A node is represented 

by an object storing

� Element

� Parent node

� Left child node

� Right child node

B
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C E
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∅∅∅∅ ∅∅∅∅ ∅∅∅∅ ∅∅∅∅
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C E
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Array Implementation of Binary Trees

Each node v is stored at index i defined as follows:

� If v is the root, i = 1

� The left child of v is in position  2i

� The right child of v is in position  2i + 1

� The parent of v is in position ???
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Space Analysis of Array Implementation

� n: number of nodes of binary tree T

� pM: index of the rightmost leaf of the corresponding full

binary tree (or size of the full tree)

� N: size of the array needed for storing T; N = pM + 1

Best-case scenario: balanced, full binary tree pM = n

Worst case scenario: unbalanced tree

� Height h = n – 1

� Size of the corresponding full tree: 

pM = 2h+1 – 1= 2n – 1

� N = 2n 

Space usage: O(2n)
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Arrays versus Linked Structure

Linked lists

� Slower operations due to 

pointer manipulations

� Use less space if the tree 

is unbalanced

� Rotation (restructuring) 

code is simple

Arrays

� Faster operations

� Use less space if the tree 

is balanced (no pointers)

� Rotation (restructuring) 

code is complex
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Binary Search Trees and AVL Trees

BST

� Properties

� Searching

� Insertion

�Distinct keys

�Duplicate keys

� Deletion (3 cases)

� Running times

AVL trees

� Properties

� Searching

� Insertion: as BST plus

�restructuring (once)

� Deletion: as BST plus

�restructuring (maybe 

more than once)

� Running times
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BSTs versus AVL Trees

Operation BSTs AVL Trees

search

insert

delete

findMin

findMax

20

Implementations of Priority Queues

� Unsorted linked list

� insertion O( )

�deleteMin O( )

� Sorted linked list

� insertion O( )

�deleteMin O( )

� AVL trees

� insertion O( )

�deleteMin O( )

� Unsorted array

� insertion O( )

�deleteMin O( )

� Sorted array

� insertion O( )

�deleteMin O( )

� Heaps

� insertion O( )

�deleteMin O( )
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Heaps

� Properties

� Array implementation

� Insert

�upheap percolation

� Delete

�downheap percolation

� Running time

� Other operations:

�decreaseKey(i, k)

�increaseKey(i, k)

�delete(i)
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Heap Sort

Using a temp heap T

for (i = 0; i++; i < n)

T.insert(A[i]);

for (i = 0; i++; i < n)

A[i] = T.deleteMin();  

Running time = ?

In-place sorting

run buildHeap on A;

repeat

deleteMax;

copyMax;

until the heap is empty; 

Running time = ?



30/03/2011

12

23

buildHeap

� Bottom-up heap construction runs in O(n) time. 

� Bottom-up heap construction is faster than n

successive insertions, which take O(nlogn).

⇒ speeds up the first phase of heap-sort.

Hashing

� Table size (a prime 

number)

� Hash functions

�For integer keys 

� division (modular)

� MAD

�For strings: polynomial 

accumulation

� z = 33, 37, 39, 41

Collision handling

� Separate chaining

� Probing (open 

addressing)

�Linear probing

�Quadratic probing

�Double hashing

� Probing: 3 types of cells 

(null, in use, available)
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Comparing Collision Handling Schemes

� Separate chaining:

– simple implementation

– faster than open 
addressing in general

– using more memory 

� Open addressing:

– using less memory

– slower than chaining in 
general

– more complex removals 

� Linear probing: items are 
clustered into contiguous 
runs (primary clustering).

� Quadratic probing: 

secondary clustering.

� Double hashing: 
distributes keys more 
uniformly than linear 
probing does.

Graphs

� Definitions (terminology)

� Properties (with respect to V and E)

� Data structures

�Adjacency matrix

�Adjacency lists

� Running time of graph methods

� Graph traversal algorithms:

�BFS

�DFS
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Properties of Undirected Graphs

Notation

V number of 

vertices

E number of edges

deg(v) degree of vertex v

Property 1

ΣΣΣΣv deg(v) = 2E

Proof: each edge is 
counted twice

Property 2

In an undirected graph 
with no loops

E ≤≤≤≤ V (V −−−− 1)////2

Proof: each vertex has 
degree at most (V −−−− 1)

What is the bound for a 
directed graph?

Example

�V = = = = 4

�E = = = = 6

�deg(v) = 3
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Applications of DFS and BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS

Spanning tree/forest, 
connected components, 
paths, cycles

√√√√ √√√√

Shortest paths √√√√

Biconnected components √√√√
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Final Exam

� Date: Sunday, 17 April 

Time: 10:00-13:00 (180 minutes)

� Materials

�Lectures notes from the beginning up to and 

including the lecture on March 31. 

�Corresponding sections in the textbook. 

�Assignments 1 to 5. 
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Exam Rules

� This is a closed-book exam. No books, notes or 

calculators are allowed. You will be given blank paper for 

scrap work.

� Bring a photo ID, pens, and pencils. You may use 

pencils with darkness of at least HB; 2B is preferred. 

� No questions are allowed during the exam. 

� You may leave the classroom if you hand in your exam 

booklet 10 minutes or more before the exam ends. 

� 30
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Exam Rules (2)

� Programming problems will be marked based on both 

correctness and efficiency. 

� You may use either Java or Java-like pseudo-code, but if 

an interface or class is given, you must use the methods 

and data structure(s) of the interface/class.
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Office Hours before Exam (tentative)

� Wednesday, 6 April, 11:00-12:00

� Thursday, 14 April, 14:00-15:00
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