
30/03/2011

1

Review – Part 1

CSE 2011

Winter 2011

130 March 2011

Algorithm Analysis

� Given an algorithm, compute its running time in

terms of O, Ω, and Θ (if any).

�Usually the big-Oh running time is enough.

� Given f(n) = 5n + 10, show that f(n) is O(n).

�Find c and n0

� Compare the grow rates of 2 functions.

� Order the grow rates of several functions.

�Use slide 14.

�Use L’Hôpital’s rule.

2

30/03/2011

2

Running Times of Loops

Nested for loops:

� If the exact number of iterations of each loop is

known, multiply the numbers of iterations of the

loops.

� If the exact number of iterations of some loop is

not known, “open” the loops and count the total

number of iterations.

3

Running Time of Recursive Methods

�Could be just a hidden “for" or “while” loop.

�See “Tail Recursion” slide.

�“Unravel” the hidden loop to count the number

of iterations.

�Logarithmic

�Examples: binary search, exponentiation, GCD

�Solving a recurrence

�Example: merge sort, quick sort

4

30/03/2011

3

Recursion

Know how to write recursive functions/methods:

� Recursive call

�Adjusting recursive parameter(s) for each call

� Base case(s)

1. Use the definition (factorial, tree depth, height)

2. Cut the problem size by half (binary search), or

by k elements at a time (sum, reversing arrays).

3. Divide and conquer (merge sort, quick sort)

5

Sorting Algorithms

� Insertion sort

�Merge sort

�Quick sort

�Lower bound of sorting algorithms

�O(NlogN)

�When to use which sorting algorithm?

�Linear-time sorting (bucket sort)

6

30/03/2011

4

Running Time of Tree Methods

Most tree methods are recursive.

� Visualize the recursion trace.

� Count the number of nodes that were visited

(processed) k.

� Compute the running time for processing each

node O(m).

� If O(mv) ≠ O(mu), sum up the running times of

the k nodes.

� Otherwise total running time = k ∗ O(m)

7

Arrays and Linked Lists

Arrays

� A = B

� Cloning arrays

� Extendable arrays

� Strategies for

extending arrays:

�doubling the size

�increment by k cells

Linked lists

� Singly linked

� Doubly linked

� Implementation

� Running times for

insertion and deletion

at the two ends.

8

30/03/2011

5

Running Times of Array and Linked

List Operations

Operation

Array

unsorted

Array

sorted

DL list

unsorted

DL list

sorted

insert O() O() O() O()

delete O() O() O() O()

search O() O() O() O()

9

Stacks, Queues and Deques

�Operations

�Array implementation

�Linked list implementation

�Running times for each implementation

�Assignment 3 (deques)

10

30/03/2011

6

Trees

� Definitions, terminologies

� Traversal algorithms and applications

�Preorder

�Postorder

� Computing depth and height of a tree or node.

11

Binary Trees

� Linked structure implementation

� Array implementation

� Traversal algorithms

�Preorder

�Postorder

�Inorder

� Properties: relationships between n, i, e, h.

� Definitions:

�complete binary tree

�full binary tree

12

30/03/2011

7

1313

Linked Structure of Binary Trees

� A node is represented

by an object storing

� Element

� Parent node

� Left child node

� Right child node

B

DA

C E

∅∅∅∅ ∅∅∅∅

∅∅∅∅ ∅∅∅∅ ∅∅∅∅ ∅∅∅∅

B

A D

C E

∅∅∅∅

14

Array Implementation of Binary Trees

Each node v is stored at index i defined as follows:

� If v is the root, i = 1

� The left child of v is in position 2i

� The right child of v is in position 2i + 1

� The parent of v is in position ???

30/03/2011

8

15

Space Analysis of Array Implementation

� n: number of nodes of binary tree T

� pM: index of the rightmost leaf of the corresponding full

binary tree (or size of the full tree)

� N: size of the array needed for storing T; N = pM + 1

Best-case scenario: balanced, full binary tree pM = n

Worst case scenario: unbalanced tree

� Height h = n – 1

� Size of the corresponding full tree:

pM = 2h+1 – 1= 2n – 1

� N = 2n

Space usage: O(2n)

16

Arrays versus Linked Structure

Linked lists

� Slower operations due to

pointer manipulations

� Use less space if the tree

is unbalanced

� Rotation (restructuring)

code is simple

Arrays

� Faster operations

� Use less space if the tree

is balanced (no pointers)

� Rotation (restructuring)

code is complex

30/03/2011

9

Review – Part 2

CSE 2011

1730 March 2011

Binary Search Trees and AVL Trees

BST

� Properties

� Searching

� Insertion

�Distinct keys

�Duplicate keys

� Deletion (3 cases)

� Running times

AVL trees

� Properties

� Searching

� Insertion: as BST plus

�restructuring (once)

� Deletion: as BST plus

�restructuring (maybe

more than once)

� Running times

18

30/03/2011

10

19

BSTs versus AVL Trees

Operation BSTs AVL Trees

search

insert

delete

findMin

findMax

20

Implementations of Priority Queues

� Unsorted linked list

� insertion O()

�deleteMin O()

� Sorted linked list

� insertion O()

�deleteMin O()

� AVL trees

� insertion O()

�deleteMin O()

� Unsorted array

� insertion O()

�deleteMin O()

� Sorted array

� insertion O()

�deleteMin O()

� Heaps

� insertion O()

�deleteMin O()

30/03/2011

11

Heaps

� Properties

� Array implementation

� Insert

�upheap percolation

� Delete

�downheap percolation

� Running time

� Other operations:

�decreaseKey(i, k)

�increaseKey(i, k)

�delete(i)

21

Heap Sort

Using a temp heap T

for (i = 0; i++; i < n)

T.insert(A[i]);

for (i = 0; i++; i < n)

A[i] = T.deleteMin();

Running time = ?

In-place sorting

run buildHeap on A;

repeat

deleteMax;

copyMax;

until the heap is empty;

Running time = ?

30/03/2011

12

23

buildHeap

� Bottom-up heap construction runs in O(n) time.

� Bottom-up heap construction is faster than n

successive insertions, which take O(nlogn).

⇒ speeds up the first phase of heap-sort.

Hashing

� Table size (a prime

number)

� Hash functions

�For integer keys

� division (modular)

� MAD

�For strings: polynomial

accumulation

� z = 33, 37, 39, 41

Collision handling

� Separate chaining

� Probing (open

addressing)

�Linear probing

�Quadratic probing

�Double hashing

� Probing: 3 types of cells

(null, in use, available)

24

30/03/2011

13

25

Comparing Collision Handling Schemes

� Separate chaining:

– simple implementation

– faster than open
addressing in general

– using more memory

� Open addressing:

– using less memory

– slower than chaining in
general

– more complex removals

� Linear probing: items are
clustered into contiguous
runs (primary clustering).

� Quadratic probing:

secondary clustering.

� Double hashing:
distributes keys more
uniformly than linear
probing does.

Graphs

� Definitions (terminology)

� Properties (with respect to V and E)

� Data structures

�Adjacency matrix

�Adjacency lists

� Running time of graph methods

� Graph traversal algorithms:

�BFS

�DFS

26

30/03/2011

14

27

Properties of Undirected Graphs

Notation

V number of

vertices

E number of edges

deg(v) degree of vertex v

Property 1

ΣΣΣΣv deg(v) = 2E

Proof: each edge is
counted twice

Property 2

In an undirected graph
with no loops

E ≤≤≤≤ V (V −−−− 1)////2

Proof: each vertex has
degree at most (V −−−− 1)

What is the bound for a
directed graph?

Example

�V = = = = 4

�E = = = = 6

�deg(v) = 3

28

Applications of DFS and BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS

Spanning tree/forest,
connected components,
paths, cycles

√√√√ √√√√

Shortest paths √√√√

Biconnected components √√√√

30/03/2011

15

Final Exam

� Date: Sunday, 17 April

Time: 10:00-13:00 (180 minutes)

� Materials

�Lectures notes from the beginning up to and

including the lecture on March 31.

�Corresponding sections in the textbook.

�Assignments 1 to 5.

29

Exam Rules

� This is a closed-book exam. No books, notes or

calculators are allowed. You will be given blank paper for

scrap work.

� Bring a photo ID, pens, and pencils. You may use

pencils with darkness of at least HB; 2B is preferred.

� No questions are allowed during the exam.

� You may leave the classroom if you hand in your exam

booklet 10 minutes or more before the exam ends.

� 30

30/03/2011

16

Exam Rules (2)

� Programming problems will be marked based on both

correctness and efficiency.

� You may use either Java or Java-like pseudo-code, but if

an interface or class is given, you must use the methods

and data structure(s) of the interface/class.

31

Office Hours before Exam (tentative)

� Wednesday, 6 April, 11:00-12:00

� Thursday, 14 April, 14:00-15:00

32

