
1

Algorithm Analysis

CSE 2011

Winter 2011

5 January 2011 1

Introduction

What is an algorithm?
a clearly specified set of simple instructions to be

followed to solve a problem
Takes a set of values, as input and

 produces a value, or set of values, as output

May be specified
 In English

As a computer program

2

As a pseudo-code

 Data structures
Methods of organizing data

 Program = algorithms + data structures

2

Introduction

Why need algorithm analysis ?
Writing a working program is not good enough.

The program may be inefficient!

If the program is run on a large data set, then
the running time becomes an issue.

3

Example: Selection Problem

Given a list of N numbers, determine the
kth l t h k Nkth largest, where k N.

Algorithm 1:
(1) Read N numbers into an array

(2) Sort the array in decreasing order by some
simple algorithm

4

p g

(3) Return the element in position k

3

Example: Selection Problem (2)

Algorithm 2:
(1) Read the first k elements into an array and

sort them in decreasing order

(2) Each remaining element is read one by one
If smaller than the kth element, then it is ignored

Otherwise, it is placed in its correct spot in the array,
bumping one element out of the array

5

bumping one element out of the array.

(3) The element in the kth position is returned as
the answer.

Example: Selection Problem (3)

 Which algorithm is better when

N = 100 and k = 100?N = 100 and k = 100?

N = 100 and k = 1?

 What happens when N = 1,000,000 and k = 500,000?

 There exist better algorithms.

6

There exist better algorithms.

4

Algorithm Analysis

We only analyze correct algorithms.

 An algorithm is correct
 If, for every input instance, it halts with the correct output.

 Incorrect algorithms

7

Might not halt at all on some input instances.

Might halt with other than the desired answer.

Algorithm Analysis (2)

 Analyzing an algorithm

P di ti th th t th l ithPredicting the resources that the algorithm
requires.

Resources include
Memory (space)

Computational time (usually most important)

Communication bandwidth (in parallel and distributed

8

Communication bandwidth (in parallel and distributed
computing)

5

Algorithm Analysis (3)

 Factors affecting the running time:
 computer
 compiler
 algorithm used
 input to the algorithm

 The content of the input affects the running time
 Typically, the input size (number of items in the input) is the main

consideration.
• sorting problem the number of items to be sorted
• multiply two matrices together the total number of elements in the

9

multiply two matrices together the total number of elements in the
two matrices

 And sometimes the input order as well (e.g., sorting algorithms).

 Machine model assumed
 Instructions are executed one after another, with no

concurrent operations not parallel computers

Analysis Model

 It takes exactly one time unit to do any
calculation such ascalculation such as
+ , -, * , /, %, &, |, &&, ||, etc.
comparison
assignment

 There is an infinite amount of memory.
 It does not consider the cost associated with

f lti i

10

page faulting or swapping.
 It does not include I/O costs (which is usually

one or more orders of magnitude higher than
computation costs).

6

An Example

int sum (int n) {

int partialSum;p

1 partialSum = 0;

2 for (int i = 0; i <= n-1; i++)

3 partialSum += i*i*i;

4 return partialSum;

}

11

 Lines 1 and 4: one unit each

 Line 3: 4N

 Line 2: 1+(N+1)+N=2N+2

 Total: 6N+4 O(N)

Running Time Calculations

 Throw away leading constants.

 Th l d t Throw away low-order terms.

 Compute a Big-Oh running time:
An upper bound for running time

Never underestimate the running time of a program

The program may end earlier, but never later (worst-
case running time)

12

case running time)

7

General Rules for Big-Oh: for loops

 for loops
at most the running time of the statements inside the for

loop (including tests) times the number of iterations.

 Nested for loops

13

 the running time of the statement multiplied by the
product of the sizes of all the for loops.

O(N 2)

Consecutive Statements

 Consecutive statements

These just add.
O(N) + O(N2) = O(N2)

14

O(N) + O(N2) = O(N2)

8

if – then – else

 if C then S1
else S2else S2
never more than the running time of the test plus the larger

of the running times of S1 and S2.

if (n > 0)

for (int i = 0; i < n; i++)

sum += i;sum += i;

else

System.out.println("Invalid input");

15

Strategies

 Analyze from the inside out (loops).
 If th th d ll l th fi t If there are method calls, analyze these first.

 Recursive methods (later):
Could be just a hidden “for” loop simple.

Solve a recurrence more complex.

16

9

Worst- / Average- / Best-Case

 Worst-case running time of an algorithm:
The longest running time for any input of size n
A b d th i ti f i tAn upper bound on the running time for any input
 guarantee that the algorithm will never take longer
Example: Sort a set of numbers in increasing order; and

the input is in decreasing order
The worst case can occur fairly often
Example: searching a database for a particular piece of

information

17

 Best-case running time:
sort a set of numbers in increasing order; and the input is

already in increasing order

 Average-case running time:
May be difficult to define what “average” means

Example

Given an array of integers, return true if
th t i b 100 d f lthe array contains number 100, and false
otherwise.
Best case: ?

Worst case: ?

Average case: ?g

 Informal intro to O, and .

18

10

Running Time of Algorithms

 Bounds are for algorithms, rather than programs.
Programs are just implementations of an algorithmPrograms are just implementations of an algorithm.

Almost always the details of the program do not affect
the bounds.

 Bounds are for algorithms, rather than problems.
A problem can be solved with several algorithms, some

19

p ob e ca be so ed se e a a go s, so e
are more efficient than others.

Example: Insertion Sort

1) Initially p = 1

2) Let the first p elements be sorted.

3) Insert the (p+1)th element properly in the list so

20

) (p) p p y
that now p+1 elements are sorted.

4) Increment p and go to step (3)

11

Insertion Sort: Example

21

Insertion Sort: Algorithm

 Consists of N - 1 passes

22

 Consists of N - 1 passes
 For pass p = 1 through N - 1, ensures that the

elements in positions 0 through p are in sorted order
 elements in positions 0 through p - 1 are already sorted
 move the element in position p left until its correct place is

found among the first p + 1 elements

12

Example 2

To sort the following numbers in increasing order:

34 8 64 51 32 21

p = 1; tmp = 8;

34 > tmp, so second element a[1] is set to 34: {8, 34}…

23

We have reached the front of the list. Thus, 1st position a[0] = tmp=8

After 1st pass: 8 34 64 51 32 21

(first 2 elements are sorted)

P = 2; tmp = 64;

34 < 64, so stop at 3rd position and set 3rd position = 64

After 2nd pass: 8 34 64 51 32 21

(first 3 elements are sorted)

P = 3; tmp = 51;

51 < 64, so we have 8 34 64 64 32 21,

34 < 51, so stop at 2nd position, set 3rd position = tmp,

After 3rd pass: 8 34 51 64 32 21

(first 4 elements are sorted)
P = 4; tmp = 32,

32 < 64, so 8 34 51 64 64 21,

32 < 51 so 8 34 51 51 64 21

24

32 < 51, so 8 34 51 51 64 21,

next 32 < 34, so 8 34 34, 51 64 21,

next 32 > 8, so stop at 1st position and set 2nd position = 32,

After 4th pass: 8 32 34 51 64 21

P = 5; tmp = 21, . . .

After 5th pass: 8 21 32 34 51 64

13

Analysis: Worst-case Running Time

 What is the worst input?

 Consider a reversed sorted list as input.

 When a[p] is inserted into the sorted sub-array a[0...p-1],
we need to compare a[p] with all elements in a[0...p-1]
and move each element one position to the right

 i steps.

 Inner loop is executed p times, for each p = 1, 2, , ..., N-1

 Overall: 1 + 2 + 3 + . . . + N-1 = … = O(N2)

25

Analysis: Best-case Running Time

 The input is already sorted in the right order.

 When inserting a[p] into the sorted sub array a[0 p 1] When inserting a[p] into the sorted sub-array a[0...p-1],
only need to compare a[p] with a[p-1] and there is no
data movement

 O(1)

 For each iteration of the outer for-loop, the inner for-loop

26

terminates after checking the loop condition once

 O(N) time

 If input is nearly sorted, insertion sort runs fast.

14

Insertion Sort: Summary

27

O(N2)

(N)

 Space requirement is O(?)

Next time …

Growth rates

O O, , , o

 Reading: chapter 4

28

