Depth-First Search

CSE 2011
Winter 2011

28 March 2011

Depth-First Search (DFS)

DFS is another popular graph search strategy

= Idea is similar to pre-order traversal (visit node, then
visit children recursively)

DFS will continue to visit ina
recursive pattern

= Whenever we visit v from u, we recursively visit all
unvisited neighbors of v. Then we backtrack (return)
el

DFS Traversal Example

1. for
2.

DFS Algorithm

Algorithm DF5(s)

each vertex o

dol| flaqg[v] := false]

3. RDFS(s);

Algorithm RDES(v)

1. [|fag[v] := true]

2. or
3.
4.

each nakghbor w of v
do it fag[w] = false
then RDFS(w);

Flag all vertices as not
visited

Flag v as visited; print v;

For unvisited neighbors,
call RDFS(w) recursively

Adjacency List Visited Table (T/F)

W= ||
A e |
- |
(¥

-5 | raa

| e | || e

:

Pred

Initialize visited
table (all False)

Initialize Pred to -1

Adjacency List Visited Table (T/F)

source

.n..-a-:.-.-._-\....-.—c.l

Mark 2 as visited

RDFS(2)
Now visit RDFS(8)

Adjacency List

source

.n...-..-:.-.-._-\....-.—c.l

RDFS(2)
RDFS(8)
2 is already visited, so visit RDFS(0)

Adjacency List

source

.n..-a-:.-.-._-\....-.—c.l

RDFS(2)
RDFS(8)
RDFS(0) -> no unvisited neighbors, return
to call RDFS(8)

Visited Table (T/F)

Mark 8 as visited

mark Pred[8]

Visited Table (T/F)

Mark 0 as visited

Mark Pred[0]

Back to 8 Adjacency List

source

_.-......-:r--—‘-"""‘:'l

RDFS(2)
RDFS(8)
Now visit 9 -> RDFS(9)

Adjacency List

source

.-.....a-:r--—‘-""'':'l

RDFS(2)
RDFS(8)
RDFS(9)
-> visit 1, RDFS(1)

Visited Table (T/F)

Visited Table (T/F)

Mark 9 as visited

Mark Pred[9]

Adjacency List

source

Wi Gk o e Gm B w bR e

RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
visit RDFS(3)

Adjacency List

source

RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
RDFS(3)
visit RDFS(4)

Visited Table (T/F)

Mark 1 as visited

Mark Pred[1]

Visited Table (T/F)

Mark 3 as visited

Mark Pred[3]

Adjacency List Visited Table (T/F)

source

o

RDFS(2) Mark 4 as visited
RDFS(8)

RDFS(9) Mark Pred[4]
RDFS(1)
RDFS(3)
RDFS(4) > STOP all of 4’s neighbors have been visited
return back to call RDFS(3) 13

Adjacency List Visited Table (T/F)

source

(5

Back to 3

RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
RDFS(3)
visit 5 -> RDFS(5)

Adjacency List Visited Table (T/F)

source

P

)
Q

RDFS(2)
RDFS(8) Mark 5 as visited

RDFS(9)
RDFS(1) Mark Pred[5]

RDFS(3)
RDFS(5)
3 is already visited, so visit 6 -> RDFS(6)

Adjacency List Visited Table (T/F)

P

)
Q

RDFS(2)
RDFS(8
R[()F)S(g) Mark 6 as visited

RDFS(1) Mark Pred[6]
RDFS(3)
RDFS(5)
RDFS(6)
visit 7 -> RDFS(7)

Adjacency List Visited Table (T/F)

source

P

)
Q

RDFS(2)

RDFS(8
R[SF)S(Q) Mark 7 as visited

RDFS(1) Mark Pred[7]
RDFS(3)
RDFS(5)
RDFS(6)
RDFS(7) -> Stop no more unvisited neighbdré

Adjacency List Visited Table (T/F)

)
Q

RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
RDFS(3)
RDFS(5)
RDFS(6) -> Stop

Adjacency List

source

[4

RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
RDFS(3)
RDFS(5) -> Stop

Adjacency List

source

RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1)
RDFS(3) -> Stop

Visited Table (T/F)

)
Q

Visited Table (T/F)

)
Q

10

Adjacency List Visited Table (T/F)

source

)
Q

RDFS(2)
RDFS(8)
RDFS(9)
RDFS(1) -> Stop

Adjacency List Visited Table (T/F)

source

)
Q

RDFS(2)
RDFS(8)
RDFS(9) -> Stop

Adjacency List Visited Table (T/F)

source

)
Q

RDFS(2)
RDFS(8) -> Stop

Recursive
calls

Example Finished

Adjacency List Visited Table (T/F)

)
Q

RDFS(2) -> Stop

Time Complexity of DFS

We never visited a vertex more than once.

We had to examine the adjacency lists of all vertices.

So, the running time of DFS is proportional to the
number of edges and number of vertices (same as BFS)

m O(V+E)

Enhanced DFS Algorithm

What if a graph is not DFsearch(G) {
connected (strongly /=1; /| component number
connected)? for every vertex v

= Use an enhanced version of flagl V] = false;
DFS, which is similar to the for every vertex v
enhanced BFS algorithm. if (flaglv] == false) {

print (“Component “ + A+);

13

Applications of DFS

Is there a path from source sto a vertex ?

Is an undirected graph connected?

Is a directed graph strongly connected?

To output the contents (e.g., the vertices) of a graph
To find the connected components of a graph

To find out if a graph contains cycles and report cycles.
To construct a DSF tree/forest from a graph

DFS Path Tracking

Adjacency List Visited Table (T/F)

)
)
Q

Algorithm Fath(e)

2
3
F

if predfw] & -1 Try some examples.
then Path(0) ->

Path(6) ->
Fath] prend [} Pzthg7; ->
ouiput w

14

Next time ...

Applications of BFS and DFS
Review

15

