
1

Breadth First Search

CSE 2011
Winter 2011

21 March 2011

2

Graph Traversal (13.3)

� Application example
�Given a graph representation and a vertex s in the

graph, find all paths from s to the other vertices.

� Two common graph traversal algorithms:
� Breadth-First Search (BFS)

� Idea is similar to level-order traversal for trees.

� Implementation uses a queue.

�Gives shortest path from a vertex to another.

� Depth-First Search (DFS)
� Idea is similar to preorder traversal for trees (visit a node

then visit its children recursively).

� Implementation uses a stack (implicitly via recursion).

3

BFS and Shortest Path Problem

� Given any source vertex s, BFS visits the other vertices
at increasing distances away from s. In doing so, BFS
discovers shortest paths from s to the other vertices.

� What do we mean by “distance”? The number of edges
on a path from s (unweighted graph).

2

4

3

5

1

7
6

9

8

0
Consider s=vertex 1

Nodes at distance 1?
2, 3, 7, 91

1

1

1
2

22

2

s

Example

Nodes at distance 2?
8, 6, 5, 4

Nodes at distance 3?
0

4

How Does BSF Work?

� Similarly to level-order traversal for trees.

� Code: similar to code of topological sort.
�flag[v] = false: we have not visited v
�flag[v] = true: we already visited v

� The BFS code we will discuss works for both
directed and undirected graphs.

5

Skeleton of BFS Algorithm

output v;

6

BFS Algorithm

flag[]: visited or not

output v;

7

BFS Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize “visited”
table (all False)

Initialize Q to be empty

8

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has
been visited

Place source 2 on the queue

9

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited 1, 4, 8

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

Neighbors

10

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }

Mark newly visited
neighbors 0, 9

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

11

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark newly visited
neighbors 3, 7

Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

12

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
-- 4 has no unvisited neighbors!

Neighbors

13

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
-- 0 has no unvisited neighbors!

Neighbors

14

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
-- 9 has no unvisited neighbors!

Neighbors

15

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.
-- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5

16

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
-- place neighbor 6 on the queue

Neighbors

Mark new visited
Vertex 6

17

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.
-- no unvisited neighbors of 5

Neighbors

18

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.
-- no unvisited neighbors of 6

Neighbors

19

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { } STOP!!! Q is empty!!!

What did we discover?

Look at “visited” tables.

There exists a path from source
vertex 2 to all vertices in the graph

20

Running Time of BFS
� Assume adjacency list

� V = number of vertices; E = number of edges

Each vertex will enter Q at
most once. dequeue is O(1).

The for loop takes time
proportional to deg(v).

21

Running Time of BFS (2)

� Recall: Given a graph with E edges

� The total running time of the while loop is:

� This is the sum over all the iterations of the while loop!

� Homework: What is the running time of BFS if we use an
adjacency matrix?

O(Σvertex v (1 + deg(v))) = O(V+E)

Σvertex v deg(v) = 2E

22

BFS and Unconnected Graphs

D
E

A
C

F
B

G
K

H

L
N

M

O
R

Q
P

s

A graph may not be connected
(strongly connected) ⇒ enhance
the above BFS code to
accommodate this case.

A graph with 3 components

23

Recall the BFS Algorithm …

output (v);

24

Enhanced BFS Algorithm

� We can re-use the previous
BFS(s) method to compute the
connected components of a
graph G.

BFSearch(G) {
i = 1; // component number

for every vertex v
flag[v] = false;

for every vertex v
if (flag[v] == false) {

print (“Component ” + i++);
BFS(v);

}
}

K

H

A
C

B

N

M

A graph with 3 components

L

25

Applications of BFS

What can we do with the BFS code we just discussed?
� Is there a path from source s to a vertex v?

� Check flag[v].

� Is an undirected graph connected?
� Scan array flag[].
� If there exists flag[u] = false then …

� Is a directed graph strongly connected?
� Scan array flag[].
� If there exists flag[u] = false then …

� To output the contents (e.g., the vertices) of a connected
(strongly connected) graph
� What if the graph is not connected (weakly connected)? Slide 24

26

Other Applications of BFS

� To find the shortest path from a vertex s to a vertex v in
an unweighted graph

� To find the length of such a path

� To find out if a graph contains cycles

� To find the connected components of a graph that is not
connected (slide 24)

� To construct a BSF tree/forest from a graph

Next time …

�Depth First Search (DFS)

�Review
�Final exam

27

