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Graph Traversal (13.3)

� Application example
�Given a graph representation and a vertex s in the 

graph, find all paths from s to the other vertices.

� Two common graph traversal algorithms:
� Breadth-First Search (BFS)

� Idea is similar to level-order traversal for trees.

� Implementation uses a queue.

�Gives shortest path from a vertex to another.

� Depth-First Search (DFS)
� Idea is similar to preorder traversal for trees (visit a node 

then visit its children recursively).

� Implementation uses a stack (implicitly via recursion).
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BFS and Shortest Path Problem

� Given any source vertex s, BFS visits the other vertices 
at increasing distances away from s.  In doing so, BFS 
discovers shortest paths from s to the other vertices.

� What do we mean by “distance”?  The number of edges 
on a path from s (unweighted graph).
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8, 6, 5, 4

Nodes at distance 3?
0

4

How Does BSF Work?

� Similarly to level-order traversal for trees.

� Code: similar to code of topological sort.
�flag[v] = false: we have not visited v
�flag[v] = true: we already visited v

� The BFS code we will discuss works for both 
directed and undirected graphs.
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Skeleton of BFS Algorithm 

output v;
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BFS Algorithm

flag[ ]: visited or not

output v;
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BFS Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

F

F

F

F

F

F

F

F

Q = {    }

Initialize “visited”
table (all False)

Initialize Q to be empty
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Place all unvisited neighbors of 2 on the queue
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-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!
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-- Only nodes 3 and 7 haven’t been visited yet.
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Dequeue 3.  
-- place neighbor 5 on the queue.
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Vertex 5
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-- no unvisited neighbors of 5
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What did we discover?

Look at “visited” tables.

There exists a path from source
vertex 2 to all vertices in the graph
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Running Time of BFS
� Assume adjacency list

� V = number of vertices;   E = number of edges

Each vertex will enter Q at
most once. dequeue is O(1).

The for loop takes time 
proportional to deg(v).
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Running Time of BFS (2)

� Recall: Given a graph with E edges

� The total running time of the while loop is:

� This is the sum over all the iterations of the while loop!

� Homework: What is the running time of BFS if we use an 
adjacency matrix?

O( Σvertex v  (1 + deg(v)) ) = O(V+E)

Σvertex v  deg(v) = 2E
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BFS and Unconnected Graphs
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A graph may not be connected 
(strongly connected) ⇒ enhance
the above BFS code to 
accommodate this case.

A graph with 3 components



23

Recall the BFS Algorithm …

output ( v );
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Enhanced BFS Algorithm

� We can re-use the previous 
BFS(s) method to compute the 
connected components of a 
graph G.

BFSearch( G )  {
i = 1;     // component number

for every vertex v
flag[v] = false;

for every vertex v
if ( flag[v] == false ) {

print ( “Component ” +  i++ );
BFS( v );

}
}
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L
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Applications of BFS

What can we do with the BFS code we just discussed?
� Is there a path from source s to a vertex v?

� Check flag[v].

� Is an undirected graph connected?
� Scan array flag[ ].
� If there exists flag[u] = false then …

� Is a directed graph strongly connected?
� Scan array flag[ ].
� If there exists flag[u] = false then …

� To output the contents (e.g., the vertices) of a connected 
(strongly connected) graph
� What if the graph is not connected (weakly connected)? Slide 24
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Other Applications of BFS

� To find the shortest path from a vertex s to a vertex v in 
an unweighted graph

� To find the length of such a path

� To find out if a graph contains cycles

� To find the connected components of a graph that is not 
connected (slide 24)

� To construct a BSF tree/forest from a graph



Next time …

�Depth First Search (DFS)

�Review
�Final exam
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