Breadth First Search

CSE 2011
Winter 2011

21 March 2011 1

Graph Traversal (13.3)

Application example

Given a graph representation and a vertex s in the
graph, find all paths from s to the other vertices.

Two common graph traversal algorithms:
Breadth-First Search (BFS)

Idea is similar to level-order traversal for trees.
Implementation uses a queue.
Gives shortest path from a vertex to another.

Depth-First Search (DFS)

Idea is similar to preorder traversal for trees (visit a node
then visit its children recursively).

Implementation uses a stack (implicitly via recursion).

BFS and Shortest Path Problem

Given any source vertex s, BFS visits the other vertices
at increasing distances away from s. In doing so, BFS
discovers shortest paths from s to the other vertices.

What do we mean by “distance”? The number of edges
on a path from s (unweighted graph).

Example

Consider s=vertex 1

Nodes at distance 1?
2,3,7,9

Nodes at distance 2?
8,6,5,4

Nodes at distance 3?
0

How Does BSF Work?

Similarly to level-order traversal for trees.

Code: similar to code of topological sort.
flag[v] = false: we have not visited v
flag[v] = true: we already visited v

The BFS code we will discuss works for both
directed and undirected graphs.

Skeleton of BFS Algorithm

Algorithm BFS(s)

Input: s is the source vertex

Output: Mark all vertices that can be visited from s.
) = empty queue;

enqueue(Q, s);

while @ is not empty

do v := dequeue(Q); outputyv;
for each w adjacent to v
enqueue(Q,w)

BFS Algorithm

Algorithm BFS(s)

Input: s is the source vertex

OQutput: Mark all vertices that can be visited from s.
1. for each vertex v

2. do flag[v] := false; flag[]: visited or not
3. @ = empty queus;

4. flag[s] := true;

5. enqueue(Q,s);

6. while @ is not empty

7. do v := dequeue(Q); outputyv;

8. for each w adjacent to v

9. do if flag[w] = false

10. then flag[w] := true;

11. enqueue(Q,w)

BFS Example

Adjacency List

source

‘coo-qmu‘.pww»—-o‘

Q:{ }

Initialize Q to be empty

Visited Table (T/F)

3}
mim|lm|mMm|Tm ||| || T

Initialize “visited”
table (all False)

Adjacency List

source

‘\om\lo\u.pwm»—-o‘
P [s W [| oo W oo

Q:{z}

Place source 2 on the queue

Visited Table (T/F)

IS
B I A e A e T e e A e I A I e I A 1

Flag that 2 has
been visited

Adjacency List Visited Table (T/F)

o o] F
0—8
1T
1—13 7 9 2
A 2T
Neighbors—»| 2 —— 8 1 4
34 5 1 :|F
42 3 alT
source 5 3 6 5| F
6—7 5 6| F
7—1 6 7| F
8§ —2 0 9 8| T
9—1 8§ o F

Mark neighbors
asvisited 1, 4, 8

Q=1{2}- {814}

Dequeue 2.
Place all unvisited neighbors of 2 on the queue 9

Adjacency List Visited Table (T/F)

- — of T
0 s
1T
1—3 7 9 2
2T
218 1 4
34 5 1 *1F
4—2 3 AT
513 6 °|F
6—7 5 6|F
71 6 7|F
P8 —2 0 9 8 (T
91 8 ofT

Mark newly visited
neighbors 0, 9

Q={ 8,1,4}-{1,4,0,9}

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue. 10
-- Notice that 2 is not placed on the queue again, it has been visited!

Adjacency List

Neighbors—»

2

9
4
1

8
37
8§ 1
4 5
2 3
3 6
75
1 6
20
8

T

‘OKZJ\IO\'JIJ:A'J-\I\J»—O|

Q:{ 1,4,0,9}-{4,0,9,3,7}

Dequeue 1.

-- Place all unvisited neighbors of 1 on the queue.

-- Only nodes 3 and 7 haven't been visited yet.

Visited Table (T/F)

~
| A==

Mark newly visited
neighbors 3, 7

11

Adjacency List

2

9
4
1

Neighbors—»

8
3
8
4
2
3
7
1
2

‘\omqmuvhwm»—o‘

P!
1
5
3
6
5
6
2 0 9
—11 8

Q:{4,0,9,3,7}—>{0,9,3,7}

Dequeue 4.
-- 4 has no unvisited neighbors!

Visited Table (T/F)

~
| A AAa]=]4

12

Adjacency List Visited Table (T/F)

_ ol T
Neighbors——| o — 8
1|
13 7 9 2
2|7
218 1 4
34 5 1 T
a2 3 T
53 6 °|F
67 5 5|F
71 6 T
8§ —2 0 9 8T
Elpu B o7
Q=1{0937}-{93,7}
Dequeue 0.
-- 0 has no unvisited neighbors! 13

Adjacency List Visited Table (T/F)

~
| A AAa]=]4

IR

0=1{9.37}-{37}

Dequeue 9.
-- 9 has no unvisited neighbors! 14

Adjacency List

Neighbors—»

‘om\lou..u.uam»—o|

Q=1{3.7}-1{7.5)

Dequeue 3.
-- place neighbor 5 on the queue.

8
3
8
4
2
3
7
1
1

[

6
—12 0 9
] 8

Visited Table (T/F)

~
BRI I I

Mark new visited
Vertex 5

15

Adjacency List

¥

Neighbors——

Q=1{7.5}~{56)

Dequeue 7.
-- place neighbor 6 on the queue

R N T =

|\Doo

Visited Table (T/F)

A A=Al AAa]=]

Mark new visited
Vertex 6

16

Adjacency List Visited Table (T/F)

_ Ik
08
13 7 9 2 T
218 1 4 2T
314 5 1 T
A2 3 T
Neighbors—»| 5 — 3 ¢ 5T
67 5 ST
7—1 6 T
82 0 9 8 (T
91 s 9T
Q=1{56}-{6}
Dequeue 5.
-- no unvisited neighbors of 5 17

Adjacency List Visited Table (T/F)

o ol T
08

e
1—3 7 9 2

K
218 1 4

3
34 5 1 T
42 3 AT
53 6 5|T
67 5 6| T
71 6 7|
§—2 0 9 N
(21! 8 o|T

0=1{6)1-1{}

Dequeue 6.
-- no unvisited neighbors of 6 18

Adjacency List Visited Table (T/F)

[

8
3
8
4
2
3
7
1 6
12 0 9 8
—1 8 9

What did we discover?

B I I I

‘om\lou..u.uam»—o|

Look at “visited” tables.

Q={1} sTOPII Qisempty!!

There exists a path from source
vertex 2 to all vertices in the graph

Running Time of BFS

Assume adjacency list
V = number of vertices; E = number of edges

Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
for each vertex v
do flag[v] := false;
Q = empty queue;
flag[s] := true;

enqueue(Q, s); .
while Q s not empty Each vertex will enter Q at

do v := dequeue(Q); most once. dequeue is O(1).

for each w adjacent to v i
do if flag[w] = false The for loop takes time

then flaglw] := true; proportional to deg(v).
enqueue(Q,w)

© N wN

=
= O

20

Running Time of BFS (2)

Recall: Given a graph with E edges
Zvenexv deg(v) = 2E
The total running time of the while loop is:
O(Zyerexv (1 +deg(v))) = O(V+E)

This is the sum over all the iterations of the while loop!

Homework: What is the running time of BFS if we use an
adjacency matrix?

21

BFS and Unconnected Graphs

A graph may not be connected
(strongly connected) = enhance
the above BFS code to
accommodate this case.

A graph with 3 components

22

Recall the BFS Algorithm ...

Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
for each vertex v
do flag[v] := false;
@ = empty queus;
flag[s] := true;
enqueue(Q, s);
while @ is not empty
do v := dequeue(Q); output (V);
for each w adjacent to v
do if flag[w] = false
then flag[w] := true;
enqueue(Q,w)

e A

e
= O

23

Enhanced BFS Algorithm

We can re-use the previous

A graph with 3 components BFS(s) method to compute the
connected components of a
graph G.

BFSearch(G) {
i=1; // component number
for every vertex v
Q flag[v] = false;
0 for every vertex v
if (flag[v] == false) {
9 print (“Component ” + i++);
BFS(Vv);
}

Applications of BFS

What can we do with the BFS code we just discussed?
Is there a path from source s to a vertex v?
Check flag[v].
Is an undirected graph connected?
Scan array flag[].
If there exists flag[u] = false then ...
Is a directed graph strongly connected?
Scan array flag[].
If there exists flag[u] = false then ...
To output the contents (e.g., the vertices) of a connected
(strongly connected) graph
What if the graph is not connected (weakly connected)? Slide 24

25

Other Applications of BFS

To find the shortest path from a vertex s to a vertex v in
an unweighted graph

To find the length of such a path
To find out if a graph contains cycles

To find the connected components of a graph that is not
connected (slide 24)

To construct a BSF tree/forest from a graph

26

Next time ...

Depth First Search (DFS)

Review
Final exam

27

