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Graphs

� A graph is a pair (V, E), where
� V is a set of nodes, called vertices
� E is a collection of pairs of vertices, called edges
� Vertices and edges are objects and store elements

� Example:
� A vertex represents an airport and stores the three-letter airport code
� An edge represents a flight route between two airports and stores the 

mileage of the route
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Edge Types

� Directed edge
� ordered pair of vertices (u,v)
� first vertex u is the origin
� second vertex v is the destination
� e.g., a flight

� Undirected edge
� unordered pair of vertices (u,v)
� e.g., a flight route

� Directed graph (digraph)
� all the edges are directed
� e.g., flight network

� Undirected graph
� all the edges are undirected
� e.g., route network

� Mixed graph: 
contains both directed and undirected 
edges
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Applications

� Electronic circuits
� Printed circuit board
� Integrated circuit

� Transportation networks
� Highway network

� Flight network

� Computer networks
� Local area network

� Internet

� Web

� Databases
� Entity-relationship diagram
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Terminology

� End vertices (or endpoints) 
of an edge
� U and V are the endpoints of 

a
� Edges incident on a vertex

� a, d, and b are incident on V
� Adjacent vertices

� U and V are adjacent
� Degree of a vertex

� W has degree 4
� Loop

� j is a loop 
(we will consider only 
loopless graphs)
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Terminology (2)

For directed graphs:
� Origin, destination of an 

edge
� Outgoing edge
� Incoming edge
� Out-degree of vertex v: 

number of outgoing edges  
of v

� In-degree of vertex v: 
number of incoming edges 
of v
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P1

Paths
� Path

� sequence of alternating vertices 
and edges 

� begins with a vertex
� ends with a vertex
� each edge is preceded and 

followed by its endpoints
� Path length

� the total number of edges on the 
path

� Simple path
� path such that all vertices are 

distinct (except that the first and 
last could be the same)

� Examples
� P1=(V,b,X,h,Z) is a simple path
� P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 

path that is not simple
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Properties of Undirected Graphs

Notation
V number of 

vertices
E number of edges

deg(v) degree of vertex v

Property 1

ΣΣΣΣv deg(v) = 2E
Proof: each edge is 

counted twice

Property 2
In an undirected graph 

with no loops
E ≤≤≤≤ V (V −−−− 1)////2

Proof: each vertex has 
degree at most (V −−−− 1)

What is the bound for a 
directed graph?

Example
�V = = = = 4
�E = = = = 6
�deg(v) = 3
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Cycles
� Cycle

� circular sequence of alternating 
vertices and edges 

� each edge is preceded and 
followed by its endpoints

� Simple cycle
� cycle such that all its vertices 

are distinct (except the first and 
the last)

� Examples
� C1=(V,b,X,g,Y,f,W,c,U,a,V) is a 

simple cycle
� C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U) 

is a cycle that is not simple
� A directed graph is acyclic if 

it has no cycles ⇒ called 
DAG (directed acyclic graph)
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Connectivity − Undirected Graphs

connected not connected

� An undirected graph is connected if there is a path from 
every vertex to every other vertex.
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Connectivity − Directed Graphs

� A directed graph is called strongly connected if there is a 
path from every vertex to every other vertex.

� If a directed graph is not strongly connected, but the 
corresponding undirected graph is connected, then the 
directed graph is said to be weakly connected.
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Graph ADT and Data Structures

CSE 2011
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Representation of Graphs

� Two popular computer representations of a graph:  
Both represent the vertex set and the edge set, but in 
different ways.

1. Adjacency Matrices
Use a 2D matrix to represent the graph

2. Adjacency Lists
Use a set of linked lists, one list per vertex
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Adjacency Matrix Representation

� 2D array of size n x n where n is the number of vertices 
in the graph

� A[i][j]=1 if there is an edge connecting vertices i and j; 
otherwise, A[i][j]=0
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Adjacency Matrix Example
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0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 1 0 1

2 0 1 0 0 1 0 0 0 1 0

3 0 1 0 0 1 1 0 0 0 0

4 0 0 1 1 0 0 0 0 0 0

5 0 0 0 1 0 0 1 0 0 0

6 0 0 0 0 0 1 0 1 0 0

7 0 1 0 0 0 0 1 0 0 0

8 1 0 1 0 0 0 0 0 0 1

9 0 1 0 0 0 0 0 0 1 0
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Adjacency Matrices: Analysis

� The storage requirement is Θ(V2). 
�not efficient if the graph has few edges. 
�appropriate if the graph is dense; that is E= ΘΘΘΘ(V2)

� If the graph is undirected, the matrix is 
symmetric.  There exist methods to store a 
symmetric matrix using only half of the space. 
�Note: the space requirement is still Θ(V2). 

� We can detect in O(1) time whether two vertices 
are connected.
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Adjacency Lists

� If the graph is sparse, a better solution is an adjacency 
list representation.

� For each vertex v in the graph, we keep a list of vertices 
adjacent to v.
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Adjacency List Example
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Adjacency Lists: Analysis

� Testing whether u is adjacency to v takes time O(deg(v)) 
or O(deg(u)).
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ΘΘΘΘ (V + ΣΣΣΣv deg(v)) = ΘΘΘΘ (V + E)
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Adjacency Lists vs. Adjacency Matrices

� An adjacency list takes Θ(V + E).
� If E = O(V2) (dense graph), both use Θ(V2) space.

� If E = O(V) (sparse graph), adjacency lists are more space efficient.

� Adjacency lists
�More compact than adjacency matrices if graph has few edges
�Requires more time to find if an edge exists

� Adjacency matrices
�Always require Θ(V2) space

�This can waste lots of space if the number of edges is small 

�Can quickly find if an edge exists
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(Undirected) Graph ADT

� Vertices and edges
� are positions
� store elements

� Define Vertex and Edge 
interfaces, each extending 
Position interface

� Accessor methods
� endVertices(e): an array of 

the two endvertices of e
� opposite(v, e): the vertex 

opposite of v on e
� areAdjacent(v, w): true iff v 

and w are adjacent
� replace(v, x): replace 

element at vertex v with x
� replace(e, x): replace 

element at edge e with x

� Update methods
� insertVertex(o): insert a 

vertex storing element o
� insertEdge(v, w, o): insert 

an edge (v,w) storing 
element o

� removeVertex(v): remove 
vertex v (and its incident 
edges)

� removeEdge(e): remove 
edge e

� Iterator methods
� incidentEdges(v): edges 

incident to v
� vertices(): all vertices in the 

graph
� edges(): all edges in the 

graph

Homework

� Prove the big-Oh running time of the graph 
methods shown in the next slide.
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Running Time of Graph Methods

• n vertices, m edges

• no parallel edges
• no self-loops
• bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1
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Next Lectures

�Graph traversal
�Breadth first search (BFS)

�Applications of BFS

�Depth first search (DFS)

�Review
�Final exam


