
Graphs

CSE 2011
Winter 2011

121 March 2011

2

Graphs

� A graph is a pair (V, E), where
� V is a set of nodes, called vertices
� E is a collection of pairs of vertices, called edges
� Vertices and edges are objects and store elements

� Example:
� A vertex represents an airport and stores the three-letter airport code
� An edge represents a flight route between two airports and stores the

mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

8
0
2

138717
43

1843

1099
1120

1233

3
3
7

2555

14
2

3

Edge Types

� Directed edge
� ordered pair of vertices (u,v)
� first vertex u is the origin
� second vertex v is the destination
� e.g., a flight

� Undirected edge
� unordered pair of vertices (u,v)
� e.g., a flight route

� Directed graph (digraph)
� all the edges are directed
� e.g., flight network

� Undirected graph
� all the edges are undirected
� e.g., route network

� Mixed graph:
contains both directed and undirected
edges

ORD PVD
flight

AA 1206

ORD PVD
849
miles

4

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net

qwest.net

math.brown.edu

cslab1bcslab1a

Applications

� Electronic circuits
� Printed circuit board
� Integrated circuit

� Transportation networks
� Highway network

� Flight network

� Computer networks
� Local area network

� Internet

� Web

� Databases
� Entity-relationship diagram

5

Terminology

� End vertices (or endpoints)
of an edge
� U and V are the endpoints of

a
� Edges incident on a vertex

� a, d, and b are incident on V
� Adjacent vertices

� U and V are adjacent
� Degree of a vertex

� W has degree 4
� Loop

� j is a loop
(we will consider only
loopless graphs)

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

6

Terminology (2)

For directed graphs:
� Origin, destination of an

edge
� Outgoing edge
� Incoming edge
� Out-degree of vertex v:

number of outgoing edges
of v

� In-degree of vertex v:
number of incoming edges
of v

A B

C D

7

P1

Paths
� Path

� sequence of alternating vertices
and edges

� begins with a vertex
� ends with a vertex
� each edge is preceded and

followed by its endpoints
� Path length

� the total number of edges on the
path

� Simple path
� path such that all vertices are

distinct (except that the first and
last could be the same)

� Examples
� P1=(V,b,X,h,Z) is a simple path
� P2=(U,c,W,e,X,g,Y,f,W,d,V) is a

path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

8

Properties of Undirected Graphs

Notation
V number of

vertices
E number of edges

deg(v) degree of vertex v

Property 1

ΣΣΣΣv deg(v) = 2E
Proof: each edge is

counted twice

Property 2
In an undirected graph

with no loops
E ≤≤≤≤ V (V −−−− 1)////2

Proof: each vertex has
degree at most (V −−−− 1)

What is the bound for a
directed graph?

Example
�V = = = = 4
�E = = = = 6
�deg(v) = 3

9

Cycles
� Cycle

� circular sequence of alternating
vertices and edges

� each edge is preceded and
followed by its endpoints

� Simple cycle
� cycle such that all its vertices

are distinct (except the first and
the last)

� Examples
� C1=(V,b,X,g,Y,f,W,c,U,a,V) is a

simple cycle
� C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U)

is a cycle that is not simple
� A directed graph is acyclic if

it has no cycles ⇒ called
DAG (directed acyclic graph)

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

10

Connectivity − Undirected Graphs

connected not connected

� An undirected graph is connected if there is a path from
every vertex to every other vertex.

11

Connectivity − Directed Graphs

� A directed graph is called strongly connected if there is a
path from every vertex to every other vertex.

� If a directed graph is not strongly connected, but the
corresponding undirected graph is connected, then the
directed graph is said to be weakly connected.

12

Graph ADT and Data Structures

CSE 2011

13

Representation of Graphs

� Two popular computer representations of a graph:
Both represent the vertex set and the edge set, but in
different ways.

1. Adjacency Matrices
Use a 2D matrix to represent the graph

2. Adjacency Lists
Use a set of linked lists, one list per vertex

14

Adjacency Matrix Representation

� 2D array of size n x n where n is the number of vertices
in the graph

� A[i][j]=1 if there is an edge connecting vertices i and j;
otherwise, A[i][j]=0

15

Adjacency Matrix Example

2

4

3

5

1

7
6

9

8

0 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 1 0 1

2 0 1 0 0 1 0 0 0 1 0

3 0 1 0 0 1 1 0 0 0 0

4 0 0 1 1 0 0 0 0 0 0

5 0 0 0 1 0 0 1 0 0 0

6 0 0 0 0 0 1 0 1 0 0

7 0 1 0 0 0 0 1 0 0 0

8 1 0 1 0 0 0 0 0 0 1

9 0 1 0 0 0 0 0 0 1 0

16

Adjacency Matrices: Analysis

� The storage requirement is Θ(V2).
�not efficient if the graph has few edges.
�appropriate if the graph is dense; that is E= ΘΘΘΘ(V2)

� If the graph is undirected, the matrix is
symmetric. There exist methods to store a
symmetric matrix using only half of the space.
�Note: the space requirement is still Θ(V2).

� We can detect in O(1) time whether two vertices
are connected.

17

Adjacency Lists

� If the graph is sparse, a better solution is an adjacency
list representation.

� For each vertex v in the graph, we keep a list of vertices
adjacent to v.

18

Adjacency List Example

2

4

3

5

1

7
6

9

8

0 0

1

2

3

4

5

6

7

8

9

2 3 7 9

8

1 4 8

1 4 5

2 3

3 6

5 7

1 6

0 2 9

1 8

19

Adjacency Lists: Analysis

� Testing whether u is adjacency to v takes time O(deg(v))
or O(deg(u)).

a b

c

d e

b

b

c

c

c

d

a e

a d e

a e

d

Space =
ΘΘΘΘ (V + ΣΣΣΣv deg(v)) = ΘΘΘΘ (V + E)

20

Adjacency Lists vs. Adjacency Matrices

� An adjacency list takes Θ(V + E).
� If E = O(V2) (dense graph), both use Θ(V2) space.

� If E = O(V) (sparse graph), adjacency lists are more space efficient.

� Adjacency lists
�More compact than adjacency matrices if graph has few edges
�Requires more time to find if an edge exists

� Adjacency matrices
�Always require Θ(V2) space

�This can waste lots of space if the number of edges is small

�Can quickly find if an edge exists

21

(Undirected) Graph ADT

� Vertices and edges
� are positions
� store elements

� Define Vertex and Edge
interfaces, each extending
Position interface

� Accessor methods
� endVertices(e): an array of

the two endvertices of e
� opposite(v, e): the vertex

opposite of v on e
� areAdjacent(v, w): true iff v

and w are adjacent
� replace(v, x): replace

element at vertex v with x
� replace(e, x): replace

element at edge e with x

� Update methods
� insertVertex(o): insert a

vertex storing element o
� insertEdge(v, w, o): insert

an edge (v,w) storing
element o

� removeVertex(v): remove
vertex v (and its incident
edges)

� removeEdge(e): remove
edge e

� Iterator methods
� incidentEdges(v): edges

incident to v
� vertices(): all vertices in the

graph
� edges(): all edges in the

graph

Homework

� Prove the big-Oh running time of the graph
methods shown in the next slide.

22

23

Running Time of Graph Methods

• n vertices, m edges

• no parallel edges
• no self-loops
• bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1

24

Next Lectures

�Graph traversal
�Breadth first search (BFS)

�Applications of BFS

�Depth first search (DFS)

�Review
�Final exam

