
1

Hashing (part 2)

CSE 2011

Winter 2011

114 March 2011

Collision Handling

 Separate chaining

 P bi (dd i) Probing (open addressing)
Linear probing

Quadratic probing

Double hashing

2

2

Quadratic Probing

 Linear probing:
Insert item (k, e)

 Quadratic probing
A[i] is occupiedInsert item (k, e)

i = h(k)
A[i] is occupied
Try A[(i+1) mod N]: used
Try A[(i+2) mod N]
and so on until
an empty cell is found

A[i] is occupied
Try A[(i+1) mod N]: used
Try A[(i+22) mod N]: used
Try A[(i+32) mod N]
and so on

 May not be able to find an

3

an empty cell is found  May not be able to find an
empty cell if N is not
prime, or the hash table is
at least half full

Double Hashing

 Double hashing uses a
secondary hash function

Insert item (k, e)
i = h(k)

d(k) and handles collisions
by placing an item in the
first available cell of the
series

(i  j  d(k)) mod N
for j  0, 1, … , N  1

 The secondary hash
function d(k) cannot have

()
A[i] is occupied
Try A[(i+d(k))mod N]: used
Try A[(i+2d(k))mod N]: used
Try A[(i+3d(k))mod N]
and so on until
an empty cell is found

4

function d(k) cannot have
zero values

 The table size N must be a
prime to allow probing of all
the cells

3

 Consider a hash
t bl t i i t

Example of Double Hashing

k h (k) d (k) Probes
18 5 3 5

table storing integer
keys that handles
collision with double
hashing
 N 13

 h(k)  k mod 13

 d(k) 7 k mod 7

41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

5

 d(k)  7  k mod 7

 Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

Double Hashing (2)

 d(k) should be chosen to minimize clustering
 Common choice of compression map for the secondary Common choice of compression map for the secondary

hash function:
d(k)  q  k mod q
where
q  N
q is a prime

 The possible values for d(k) are

6

 The possible values for d(k) are
1, 2, … , q

 Note: linear probing has d(k)  1.

4

Comparing Collision Handling Schemes
 = n/N
Unsuccessful: key not found
Successful: key found

7

Comparing Collision Handling Schemes (2)

 Separate chaining:
– simple implementation

 Linear probing: items are
clustered into contiguous simple implementation

– faster than open
addressing in general
– using more memory

 Open addressing:
– using less memory

g
runs (primary clustering).

 Quadratic probing:
secondary clustering.

 Double hashing:

8

– using less memory
– slower than chaining in
general
– more complex removals

Double hashing:
distributes keys more
uniformly than linear
probing does.

5

Performance of Hashing

 In the worst case, searches,
insertions and removals on a

 The expected running time
of all the dictionary ADT

hash table take O(n) time.
 The worst case occurs when

all the keys inserted into the
map collide.

 The load factor   nN
affects the performance of a
hash table.

 Assuming that the hash

operations in a hash table is
O(1).

 In practice, hashing is very
fast provided the load factor
is not close to 100%.
 rehashing.

 Applications of hash tables:
 small databases

9

Assuming that the hash
values are like random
numbers, it can be shown
that the expected number of
probes for an insertion with
open addressing is

1 (1  )

 small databases
 compilers
 browser caches
 converting non-integer
keys to integers.

Keys That Are Strings

 We need to convert a string to an integer before hashing.

 One option is to add up the ASCII values of the
characters in the string.
 Is this a good strategy?

 Polynomial accumulation:
We partition the bits of the key into a sequence of components of

fixed length (e.g., 8, 16 or 32 bits).

10

x0 x1 … xn1
We evaluate the polynomial

p(z)  x0  x1 z  x2 z2  …  xn1zn1

at a fixed value z, ignoring overflows.

6

Polynomial Accumulation

 Polynomial p(z) can be evaluated in O(n) time using
Horner’s rule:
 The following polynomials are successively computed, each from

the previous one in O(1) time

p0(z)  xn1

pi (z)  xni1  zpi1(z)
(i  1, 2, …, n 1)

 We have p(z)  pn1(z)
G d l 33 37 39 41

11

 Good z values: 33, 37, 39, 41.
 Especially suitable for strings
 z  33 gives at most 6 collisions on a set of 50,000 English

words.

Summary

 Purpose of hash tables:
to obtain O(1) expected

 If collision occurs, use
one of the collision () p

query time using O(n+N)
space.

 If the keys are not
integers, convert them to
integer keys.

 Map integer keys to the
hash table entries using a

handling schemes, taking
into account available
memory space.

 If the load factor   nN
approaches the specified
threshold, rehash.

12

hash table entries using a
compression map
function.

7

Next time…

 Graphs (chapter 13)

13

