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Collision Handling

 Separate chaining

 P bi ( dd i ) Probing (open addressing)
Linear probing

Quadratic probing

Double hashing
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Quadratic Probing

 Linear probing:
Insert item (k, e)

 Quadratic probing
A[i] is occupiedInsert item (k, e)

i = h(k)
A[i] is occupied
Try A[(i+1) mod N]: used
Try A[(i+2) mod N]
and so on until 
an empty cell is found

A[i] is occupied
Try A[(i+1) mod N]: used
Try A[(i+22) mod N]: used
Try A[(i+32) mod N] 
and so on

 May not be able to find an
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an empty cell is found  May not be able to find an 
empty cell if N is not 
prime, or the hash table is 
at least half full

Double Hashing

 Double hashing uses a 
secondary hash function 

Insert item (k, e)
i = h(k)

d(k) and handles collisions 
by placing an item in the 
first available cell of the 
series

(i  j  d(k)) mod N
for j  0,  1, … , N  1

 The secondary hash 
function d(k) cannot have

( )
A[i] is occupied
Try A[(i+d(k))mod N]: used
Try A[(i+2d(k))mod N]: used
Try A[(i+3d(k))mod N]
and so on until 
an empty cell is found

4

function d(k) cannot have 
zero values

 The table size N must be a 
prime to allow probing of all 
the cells
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 Consider a hash 
t bl t i i t

Example of Double Hashing

k h (k ) d (k ) Probes
18 5 3 5

table storing integer 
keys that handles 
collision with double 
hashing
 N 13

 h(k)  k mod 13

 d(k) 7 k mod 7

41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8
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 d(k)  7  k mod 7

 Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

Double Hashing (2)

 d(k) should be chosen to minimize clustering
 Common choice of compression map for the secondary Common choice of compression map for the secondary 

hash function: 
d(k)  q  k mod q
where
q  N
q is a prime

 The possible values for d(k) are
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 The possible values for d(k) are
1, 2, … , q

 Note: linear probing has d(k)  1.
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Comparing Collision Handling Schemes
 = n/N
Unsuccessful: key not found
Successful: key found
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Comparing Collision Handling Schemes (2)

 Separate chaining:
– simple implementation

 Linear probing: items are 
clustered into contiguous simple implementation

– faster than open 
addressing in general
– using more memory 

 Open addressing:
– using less memory

g
runs (primary clustering).

 Quadratic probing: 
secondary clustering.

 Double hashing:
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– using less memory
– slower than chaining in 
general
– more complex removals 

Double hashing: 
distributes keys more 
uniformly than linear 
probing does.
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Performance of Hashing

 In the worst case, searches, 
insertions and removals on a 

 The expected running time 
of all the dictionary ADT 

hash table take O(n) time.
 The worst case occurs when 

all the keys inserted into the 
map collide.

 The load factor   nN 
affects the performance of a 
hash table.

 Assuming that the hash

operations in a hash table is 
O(1).

 In practice, hashing is very 
fast provided the load factor 
is not close to 100%.
 rehashing.

 Applications of hash tables:
 small databases

9

Assuming that the hash 
values are like random 
numbers, it can be shown 
that the expected number of 
probes for an insertion with 
open addressing is

1 (1  )

 small databases
 compilers
 browser caches
 converting non-integer 
keys to integers.

Keys That Are Strings

 We need to convert a string to an integer before hashing.

 One option is to add up the ASCII values of the 
characters in the string.
 Is this a good strategy?

 Polynomial accumulation:
We partition the bits of the key into a sequence of components of 

fixed length (e.g., 8, 16 or 32 bits).
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x0 x1 … xn1
We evaluate the polynomial

p(z)  x0  x1 z  x2 z2  …  xn1zn1

at a fixed value z, ignoring overflows.
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Polynomial Accumulation

 Polynomial p(z) can be evaluated in O(n) time using 
Horner’s rule:
 The following polynomials are successively computed, each from 

the previous one in O(1) time

p0(z)  xn1

pi (z)  xni1  zpi1(z)
(i  1, 2, …, n 1)

 We have p(z)  pn1(z)
G d l 33 37 39 41
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 Good z values: 33, 37, 39, 41.
 Especially suitable for strings 
 z  33 gives at most 6 collisions on a set of 50,000 English 

words.

Summary

 Purpose of hash tables: 
to obtain O(1) expected

 If collision occurs, use 
one of the collision ( ) p

query time using O(n+N) 
space.

 If the keys are not 
integers, convert them to 
integer keys.

 Map integer keys to the 
hash table entries using a

handling schemes, taking 
into account available 
memory space.

 If the load factor   nN 
approaches the specified 
threshold, rehash.
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hash table entries using a 
compression map
function.
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Next time…

 Graphs (chapter 13)
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