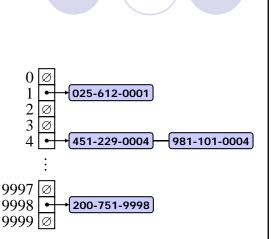


Hashing

- BST, AVL trees: O(logN) for insertion, deletions and searches.
- Hashing is a technique used for performing insertion, deletions and searches in <u>constant average</u> time.
- Finding min, finding max, printing the whole collection in sorted order in linear time are not supported.
- A hash table data structure consists of:
 - O Hash function h
 - Array of size **N** (bucket array)

Example

- We design a hash table for a dictionary storing items (SIN, Name), where SIN (social insurance number) is a ten-digit positive integer
- Our hash table uses an array of size N = 10,000 and the hash function $h(x) = x \mod N$
- We use chaining to handle collisions
- Assuming integer keys, how do we map keys to hash table entries?



3

Hash Functions and Hash Tables

- A hash function h maps keys of a given type to integers in a fixed interval [0, N - 1]
- Example:
 - $h(x) = x \mod N$ is a hash function for integer keys
- The integer h(x) is called the hash value of key x
- The goal of a hash function is to uniformly disperse keys in the range [0, N - 1]

- A hash table for a given key type consists of
 - Hash function h
 - Array of size N
- A collision occurs when two keys in the dictionary have the same hash value.
- Collision handing schemes:
 - Chaining: colliding items are stored in a sequence
 - Open addressing: the colliding item is placed in a different cell of the table

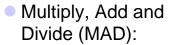
Design Issues

- Hash function
 - O For integer keys (compression functions)
 - For strings
- Collision handling
 - Separate chaining
 - Probing (open addressing)
 - Linear probing
 - Quadratic probing
 - Double hashing
- Table size (should be a prime number)

5

Hash Functions

- $\bigcap h_{2}(y) = y \mod N$
- The size N of the hash table is usually chosen to be a prime number to minimize the number of collisions
- The reason has to do with number theory and is beyond the scope of this course



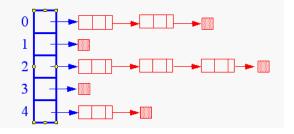
- $\bigcirc h_2(y) = (ay + b) \bmod N$
- \bigcirc *a* and *b* are nonnegative integers such that $a \mod N \neq 0$
- Otherwise, every integer would map to the same value *b*

Collision Handling

- Collisions occur when different elements are mapped to the same cell
- Separate Chaining: let each cell in the table point to a linked list of entries that map there
- Separate chaining is simple, but requires additional memory outside the table

7

Separate Chaining



- Use chaining to set up lists of items with same index
- The <u>expected</u> search/insertion/removal time is O(n/N), provided that the indices are uniformly distributed
 - N = hash table size
 - on = number of elements in the table
- If n = O(N), the expected running time is O(1)

Load Factor - Separate Chaining

- Define the load factor $\lambda = n/N$
 - on = number of elements in the hash table
 - N = hash table size (prime number)
- To obtain best performance with separate chaining, ensure $\lambda \le 1$.
- As we add more elements to the hash table, λ goes up \Rightarrow rehashing (allocate a bigger table, define a new hash function, and copy the elements to the new array).

9

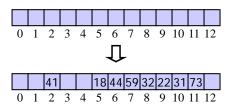
Collision Handling

- Separate chaining
- Probing (open addressing)
 - Linear probing
 - O Quadratic probing
 - O Double hashing

Linear Probing

- Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together; future collisions will cause a longer sequence of probes

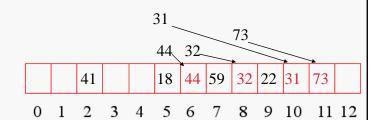
- Example:
 - $\bigcirc h(x) = x \mod 13$
 - Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order
 - Remove 44, 32, 73, 31



11

Linear Probing Example

18 41 22 44 59 32 31 73



Search with Linear Probing

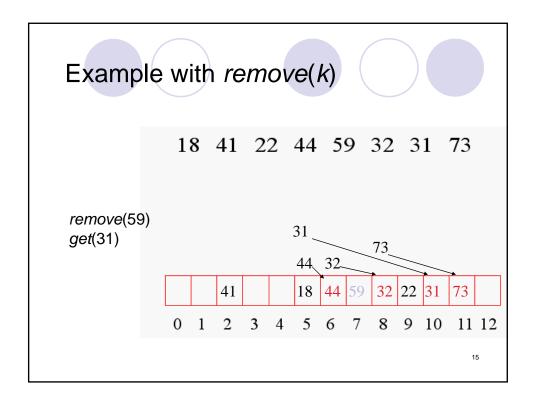
- Consider a hash table A that uses linear probing
- ext(k)
 - \bigcirc We start at cell h(k)
 - We probe consecutive locations until one of the following occurs
 - An item with key k is found, or
 - An empty cell is found, or
 - N cells have been unsuccessfully probed

```
Algorithm get(k)
i \leftarrow h(k)
p \leftarrow 0
repeat
c \leftarrow A[i]
if c = \emptyset
return NULL
else if c.key \ () = k
return c.element()
else
i \leftarrow (i+1) \mod N
p \leftarrow p+1
until p = N
return NULL
```

13

Removal and Insertion with Probing

- remove(k)
 - Call *get*(*k*) to get the element.
 - Should we set the now empty cell to NULL?
 - No. It would mess up the search procedure. See example on the next slide.
 - O Return the element.
- A cell has three states:
 - onull: brand new, never used. *get(x)* stops when a null cell is reached.
 - o in use: currently used.
 - available: previously used, now available but unused. get(x) continues the search when encountering an available cell.
 - Example of available cells: key has value -1.



Linear Probing: Removal and Insertion

- To handle insertions and deletions, we marked the deleted cells as "available" instead of null.
- remove(k)
 - We search for a cell with key k
 - If such an item is found, we mark the cell as "available" and we return the element.
 - O Else, we return NULL

- put(k, e)
 If table is not full, we start at cell h(k). If this cell is occupied:
 - We probe consecutive cells until a cell i is found that is either null or marked as "available".
 - O We store item (k, e) in cell i

Load Factor – Linear Probing

- Define the load factor λ = n/N
 - on = number of elements in the hash table
 - N = hash table size (prime number)
- To obtain best performance with linear probing, ensure that $\lambda \le 0.5$.
- As we add more elements to the hash table, λ goes up \Rightarrow rehashing (allocate a bigger table, define a new hash function, and copy the elements to the new array).

17

Next time ...

- O Linear probing
- Quadratic probing
- O Double hashing
- Rehashing
- Hash functions for strings
- For a brief comparison of hash tables and self-balancing binary search trees (such as AVL trees), see
 http://en.wikipedia.org/wiki/Associative_array#Efficient_representations