10 March 2011

Heap Sort

CSE 2011
Winter 2011

Heap Sort

Consider a priority queue
with n items implemented by
means of a heap

the space used is O(n)

methods insert and
deleteMin take O(log n)
time

methods size, isEmpty,
and findMin take time
0O(2) time

Using a heap-based priority
queue, we can sort a
sequence of n elements in
O(n log n) time

The resulting algorithm is
called heap-sort

Heap-sort is much faster
than quadratic sorting
algorithms, such as
insertion-sort and selection-
sort

Sorting Using a Heap
Input: array A with n elements to be sorted

Temporary array T of size at least n+1, which will work
as a heap.

2 steps:
Create a heap T using the elements of A
Insert each element A[i] into T using T.insert(A[i])

Call T.deleteMin() n times to move the elements from T
to A, one by one.

Sorting Code

for 1I=0; i++;1<n)
T.insert(A[i]);

for (i=0; i++;i<n)
A[i] = T.deleteMin();

Analysis of Heap Sort

Stirling’s approximation: nN=n"e™" /2m

Insertions
logl +log 2 + ... + log n =log(n!) = O(nlogn)

Deletions
logl +log 2 + ... + log n =log(n!) = O(nlogn)

Total = O(nlogn)

In-place Heap Sort

In-place Heap Sort

The heap sort algorithm we just discussed
requires a temporary array T (a min heap).

In-place heap sort uses only one array, the
original array storing the inputs.

2 steps:

Transform the original array to a max heap
using buildHeap procedure (“heapify”)

Call deleteMax() n times to get the array sorted.

Step 1: buildHeap

Input: a non-heap binary
tree stored in an array

Output: a heap stored in
the same array 2-1 2-1

We can construct a
heap storing n given ﬂ
keys using a bottom-up

construction with logn

phases

In phase i, pairs of
heaps with 2/ -1 keys are
merged into heaps with
2i+1-1 keys

Aalalal3T2Tis] o [10]12]8 7]

S
\/Q_r (4
3 2
g \1\ /]\/ /\v‘\
4 o 5 g h 3
/5/\ (;/ lo\ 4 /\,_ / \ .
= &7 ‘ l(/ (& \‘I(),
8 ‘\ ! 3 9 »n? -
@) B) b)
1 1
() (a
/" ~ AN
Py s 7 a s e /O NU
/Q/"‘ \(n_“) & 10) @, oC& G
. 10 = 9 10 -
% &t S &
@@ @®
«©))

buildHeap Example

See demo with max heaps at

www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingll/heapSort/heapSort.html

“Heapify” from height 1 to h (bottom-up
construction)

10

Step 2: Call deleteMax

The first step is to build a max heap using buildHeap.
Call deleteMax to remove the max item (the root).

The heap size is reduced by one.

The last entry of the heap is now empty.
Store the item just removed into that location

(copyMax).

Repeat deleteMax and copyMax until the heap is empty

(n— 1 times).
Examples: next slides

Demo/animation
www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingll/heapSort/heapSort.html
www2.hawaii.edu/~copley/665/HSApplet.html "
6,) 0,
fid g &‘;'f}‘ .'g'-"'f \‘Yiﬁ' Y 5
S oy 24 24 P
& e ® @ o 6 & wa e
@& @ ofoX ¥ 5@ ®
() (b} {c)
@ (@ B,
8] 13) @ ® @ ©
11%',‘-/\ \1 a’ \1_23 4/ T @ -"_lﬁ.:/ \\’ ® @&
B8 ® . a8 " &8 e)
L} el [H]
! 3 pe)
/'} 2 @ @& w @ @
T o® @ ® @ O @ e @
®e8® ®e® @ @ ®
E {h} {i
(1)
| @ @ . R
A B2 314] 78 9[10(14]16
a6 0E as

i} (k)

Breakdown of Step (b)

@ Q. (o)
@ Yo @ Yo @y /.\
@ e @ @ e @ @ e @
ol e, . ey . ey .
2) (1) i {2) i {2) i
>0 @ Qe Q@
temp = Al 1]; /1 14
Al1] = Ali-1]; /] A[1] =1
/3 | /1 Perform down-heap percol ation
@ D @ /1 So 10 now is the new root.
o T¥ Il 1is a leaf.
(b} H — .
Ali-1] =tenp; // 14
i =i-1;

13

Analysis of buildHeap

Bottom-up heap construction runs in O(n) time.

Bottom-up heap construction is faster than n
successive insertions (slide 3), which take O().

= speeds up the first phase of heap-sort.

Analysis of buildHeap (2)

Theorem: For the complete binary tree of height h
containing n = 2"*1—1 nodes, the sum of the heights of
all the nodes is 2"*1—1—(h +1)

buildHeap thus runs in O(n) time

Analysis of In-place Heap Sort

Build a max heap using buildHeap = O()
Repeat

deleteMax = O()

copyMax = O()
until the heap is empty = n iterations

Total running time = O(n log n)

16

Review of Heap Sort

Using a temp heap T In-place sorting

for I=0; i++;1<n) run buildHeap on A;
T.insert(A[i]); repeat

for (I=0; i++;1<n) deleteMax;
Ali] = T.deleteMin(); copyMakx;

until the heap is empty;

Next time ...

Hash Tables (section 9.2)

18

