
10 March 2011 1

Heap Sort

CSE 2011
Winter 2011

2

Heap Sort

� Consider a priority queue
with n items implemented by
means of a heap
� the space used is O(n)
�methods insert and

deleteMin take O(log n)
time

�methods size, isEmpty,
and findMin take time
O(1) time

� Using a heap-based priority
queue, we can sort a
sequence of n elements in
O(n log n) time

� The resulting algorithm is
called heap-sort

� Heap-sort is much faster
than quadratic sorting
algorithms, such as
insertion-sort and selection-
sort

3

Sorting Using a Heap

� Input: array A with n elements to be sorted

� Temporary array T of size at least n+1, which will work
as a heap.

� 2 steps:
1. Create a heap T using the elements of A

�Insert each element A[i] into T using T.insert(A[i])
2. Call T.deleteMin() n times to move the elements from T

to A, one by one.

Sorting Code

for (i = 0; i++; i < n)
T.insert(A[i]);

for (i = 0; i++; i < n)
A[i] = T.deleteMin();

4

5

Analysis of Heap Sort

� Stirling’s approximation:

� Insertions
log1 + log 2 + … + log n = log(n!) = O(nlogn)

� Deletions
log1 + log 2 + … + log n = log(n!) = O(nlogn)

� Total = O(nlogn)

nenn nn π2! −≈

In-place Heap Sort

6

7

In-place Heap Sort

� The heap sort algorithm we just discussed
requires a temporary array T (a min heap).

� In-place heap sort uses only one array, the
original array storing the inputs.

� 2 steps:
1.Transform the original array to a max heap

using buildHeap procedure (“heapify”)
2.Call deleteMax() n times to get the array sorted.

8

� Input: a non-heap binary
tree stored in an array

� Output: a heap stored in
the same array

� We can construct a
heap storing n given
keys using a bottom-up
construction with log n
phases

� In phase i, pairs of
heaps with 2i −1 keys are
merged into heaps with
2i+1−1 keys

Step 1: buildHeap

2i −1 2i −1

2i+1−1

9

10

buildHeap Example

� See demo with max heaps at
www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingII/heapSort/heapSort.html

� “Heapify” from height 1 to h (bottom-up
construction)

11

Step 2: Call deleteMax

� The first step is to build a max heap using buildHeap.
� Call deleteMax to remove the max item (the root).

�The heap size is reduced by one.
�The last entry of the heap is now empty.
�Store the item just removed into that location

(copyMax).
� Repeat deleteMax and copyMax until the heap is empty

(n ─ 1 times).
� Examples: next slides
� Demo/animation

www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingII/heapSort/heapSort.html
www2.hawaii.edu/~copley/665/HSApplet.html

12

13

14

1

14

10

1

14

10

9

1

Breakdown of Step (b)

temp = A[1]; // 14
A[1] = A[i-1]; // A[1] = 1
// Perform down-heap percolation
// So 10 now is the new root.
// 1 is a leaf.
A[i-1] = temp; // 14
i = i-1;

14

Analysis of buildHeap

� Bottom-up heap construction runs in O(n) time.
� Bottom-up heap construction is faster than n

successive insertions (slide 3), which take O().

⇒ speeds up the first phase of heap-sort.

15

Analysis of buildHeap (2)

� Theorem: For the complete binary tree of height h
containing n = 2h+1 – 1 nodes, the sum of the heights of
all the nodes is 2h+1 – 1 – (h + 1)

� buildHeap thus runs in O(n) time

16

Analysis of In-place Heap Sort

� Build a max heap using buildHeap ⇒ O()

� Repeat

�deleteMax ⇒ O()

�copyMax ⇒ O()

until the heap is empty ⇒ n iterations

Total running time = O(n log n)

Review of Heap Sort

Using a temp heap T

for (i = 0; i++; i < n)
T.insert(A[i]);

for (i = 0; i++; i < n)
A[i] = T.deleteMin();

In-place sorting

run buildHeap on A;
repeat

deleteMax;
copyMax;

until the heap is empty;

18

Next time …

� Hash Tables (section 9.2)

