
1

9 March 2011 1

Heaps (8.3)

CSE 2011

Winter 2011

2

Priority Queues

� Data structure supporting the following operations:

� insert (equivalent to enqueue)

� deleteMin (or deleteMax) (equivalent to dequeue)

� Other operations (optional)

� Applications:

� Emergency room waiting list

� Routing priority at routers in a network

� Printing job scheduling

2

3

Simple Implementations of PQs

� Unsorted linked list

� insertion O()

�deleteMin O()

� Sorted linked list

� insertion O()

�deleteMin O()

� AVL trees

� insertion O()

�deleteMin O()

� Unsorted array

� insertion O()

�deleteMin O()

� Sorted array

� insertion O()

�deleteMin O()

� A data structure more

efficient for PQs is

heaps.

4

Complete Binary Trees

� Let h be the height of a binary tree.

� for i = 0, … , h − 1, there are 2i nodes at depth i.

� that is, all levels except the last are full.

�at depth h, the nodes are filled from left to right.

1

2

2h−1

1

keys

0

1

h−1

h

depth

3

5

Complete Binary Trees (2)

� Given a complete binary tree of height h and size n,

2h ≤ n ≤ 2h+1 – 1

� Which data structure is better for implementing
complete binary trees, arrays or linked structures?

1

2

2h−1

1

keys

0

1

h−1

h

depth

6

Heaps

� A heap is a binary tree
storing keys at its nodes
and satisfying the following
properties:

�Heap-Order: for every
internal node v other than
the root,
key(v) ≥ key(parent(v))

�Complete Binary Tree: let h
be the height of the heap

� for i = 0, … , h − 1, there
are 2i nodes at depth i.

�at depth h, the nodes
are filled from left to
right.

2

65

79

� The last node of a heap is
the rightmost node of
depth h.

� Where can we find the
smallest key in a min
heap? The largest key?

last node

4

7

Examples that are not heaps

8

Height of a Heap

� Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)

� Let h be the height of a heap storing n keys

� Since there are 2i keys at depth i = 0, … , h − 1 and at least one key

at depth h, we have n ≥ 1 + 2 + 4 +… + 2h−1 + 1

� Thus, n ≥ 2h , i.e., h ≤ log n

1

2

2h−1

1

keys

0

1

h−1

h

depth

5

9

Max Heap

�The definition we just discussed is for a

min heap.

�Analogously, we can declare a max heap

if we need to implement deleteMax

operation instead of deleteMin.

10

Heaps and Priority Queues

� We can use a heap to implement a priority queue

� We store a (key, element) item at each internal node

� We keep track of the position of the last node

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

6

11

Insertion into a Heap

� Method insert of the

priority queue ADT

corresponds to the

insertion of a key k to

the heap

� The insertion algorithm

consists of three steps

�Find the insertion node z

(the new last node)

�Store k at z

�Restore the heap-order

property (discussed

next)

2

65

79

insertion node

2

65

79 1

z

z

12

Upheap Percolation (Bubbling)

� After the insertion of a new key k, the heap-order property
may be violated

� Algorithm upheap restores the heap-order property by
swapping k along an upward path from the insertion node

� Upheap terminates when the key k reaches the root or a
node whose parent has a key smaller than or equal to k

� Since a heap has height O(log n), upheap runs in O(log n)
time

2

15

79 6
z

1

25

79 6
z

www.cs.hut.fi/Opinnot/T-106.1220/heaptutorial/lisaaminen.html

7

13

Removal from a Heap

� Method deleteMin of the
priority queue ADT
corresponds to the
removal of the root key
from the heap

� The removal algorithm
consists of three steps
� Replace the root key with

the key of the last node w

� Remove w

� Restore the heap-order
property (discussed next)

2

65

79

last node

w

7

65

9

w

new last node

14

Downheap Percolation

� After replacing the root key with the key k of the last node, the

heap-order property may be violated

� Algorithm downheap restores the heap-order property by

swapping key k along a downward path from the root

� Upheap terminates when key k reaches a leaf or a node whose

children have keys greater than or equal to k

� Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9

w

5

67

9

w

8

15

More Heap Operations

Assume a min heap.

� decreaseKey(i, k)

� T[i] = T[i] −−−− k, then percolate up.

� Example: system admin boosts the priority of his/her jobs.

� increaseKey(i, k)

� T[i] = T[i] + k, then percolate down.

� Example: penalizing misbehaved processes.

� delete(i)

� Perform decreaseKey(i, ∞∞∞∞) then deleteMin().

� ∞∞∞∞ means a very large number, so T[i] = T[i] −−−− ∞∞∞∞ has the highest priority (root)

� Example: removing a print job from the priority queue.

� Note: searching for the element at index i takes O(n) time in the
worst case, but we expect not to use the above methods very often.

16

Next Time H

�Heap Sort (8.3.5)

