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Priority Queues

� Data structure supporting the following operations:

� insert (equivalent to enqueue)

� deleteMin (or deleteMax) (equivalent to dequeue)

� Other operations (optional)

� Applications:

� Emergency room waiting list

� Routing priority at routers in a network

� Printing job scheduling
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Simple Implementations of PQs

� Unsorted linked list

� insertion O( )

�deleteMin O( )

� Sorted linked list

� insertion O( )

�deleteMin O( )

� AVL trees

� insertion O( )

�deleteMin O( )

� Unsorted array

� insertion O( )

�deleteMin O( )

� Sorted array

� insertion O( )

�deleteMin O( )

� A data structure more 

efficient for PQs is 

heaps.
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Complete Binary Trees

� Let h be the height of a binary tree.

� for i = 0, … , h − 1, there are 2i nodes at depth i.

� that is, all levels except the last are full.

�at depth h, the nodes are filled from left to right.
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Complete Binary Trees (2)

� Given a complete binary tree of height h and size n,

2h ≤ n ≤ 2h+1 – 1

� Which data structure is better for implementing 
complete binary trees, arrays or linked structures?
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Heaps

� A heap is a binary tree 
storing keys at its nodes 
and satisfying the following 
properties:

�Heap-Order: for every 
internal node v other than 
the root,
key(v) ≥ key(parent(v))

�Complete Binary Tree: let h
be the height of the heap

� for i = 0, … , h − 1, there 
are 2i nodes at depth i.

�at depth h, the nodes 
are filled from left to 
right.
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� The last node of a heap is 
the rightmost node of 
depth h.

� Where can we find the 
smallest key in a min 
heap? The largest key?

last node
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Examples that are not heaps
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Height of a Heap 

� Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)

� Let h be the height of a heap storing n keys

� Since there are 2i keys at depth i = 0, … , h − 1 and at least one key 

at depth h, we have n ≥ 1 + 2 + 4 +… + 2h−1 + 1

� Thus, n ≥ 2h , i.e., h ≤ log n
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Max Heap

�The definition we just discussed is for a 

min heap.  

�Analogously, we can declare a max heap 

if we need to implement deleteMax

operation instead of deleteMin.
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Heaps and Priority Queues

� We can use a heap to implement a priority queue

� We store a (key, element) item at each internal node

� We keep track of the position of the last node

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)
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Insertion into a Heap

� Method insert of the 

priority queue ADT 

corresponds to the 

insertion of a key k to 

the heap

� The insertion algorithm 

consists of three steps

�Find the insertion node z

(the new last node)

�Store k at z

�Restore the heap-order 

property (discussed 

next)
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Upheap Percolation (Bubbling)

� After the insertion of a new key k, the heap-order property 
may be violated

� Algorithm upheap restores the heap-order property by 
swapping k along an upward path from the insertion node

� Upheap terminates when the key k reaches the root or a 
node whose parent has a key smaller than or equal to k

� Since a heap has height O(log n), upheap runs in O(log n)
time
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www.cs.hut.fi/Opinnot/T-106.1220/heaptutorial/lisaaminen.html
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Removal from a Heap

� Method deleteMin of the 
priority queue ADT 
corresponds to the 
removal of the root key 
from the heap

� The removal algorithm 
consists of three steps
� Replace the root key with 

the key of the last node w

� Remove w

� Restore the heap-order 
property (discussed next)
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Downheap Percolation

� After replacing the root key with the key k of the last node, the 

heap-order property may be violated

� Algorithm downheap restores the heap-order property by 

swapping key k along a downward path from the root

� Upheap terminates when key k reaches a leaf or a node whose 

children have keys greater than or equal to k

� Since a heap has height O(log n), downheap runs in O(log n) time
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More Heap Operations

Assume a min heap.

� decreaseKey(i, k)

� T[i] = T[i] −−−− k, then percolate up.

� Example: system admin boosts the priority of his/her jobs.

� increaseKey(i, k)

� T[i] = T[i] + k, then percolate down.

� Example: penalizing misbehaved processes.

� delete(i)

� Perform decreaseKey(i, ∞∞∞∞) then deleteMin().

� ∞∞∞∞ means a very large number, so T[i] = T[i] −−−− ∞∞∞∞ has the highest priority (root)

� Example: removing a print job from the priority queue.

� Note: searching for the element at index i takes O(n) time in the 
worst case, but we expect not to use the above methods very often.

16

Next Time H

�Heap Sort (8.3.5)


