
Binary Search Trees (10.1)

CSE 2011
Winter 2011

18 March 2011

Dictionary ADT (9.5.1)

• The dictionary ADT models a
searchable collection of key-
element items

• The main operations of a
dictionary are searching,
inserting, and deleting items

• Multiple items with the same key
are allowed

• Applications:
– address book
– credit card authorization
– SIN database
– student database

Dictionary ADT methods:
• get(k): if the dictionary has an

item with key k, returns its
element, else, returns NULL

• getAll(k): returns an iterator of
entries with key k

• put(k, o): inserts item (k, o)
into the dictionary

• remove(k): if the dictionary
has an item with key k,
removes it from the dictionary
and returns its element, else
returns NULL

• removeAll(k): remove all
entries with key k; return an
iterator of these entries.

• size(), isEmpty()

2

Binary Search Trees
• A binary search tree is a

binary tree storing keys (or
key-element pairs) at its
internal nodes and satisfying
the following property:

Let u, v, and w be three
nodes such that u is in the
left subtree of v and w is in
the right subtree of v. We
have
key(u) ≤ key(v) ≤ key(w)

• External nodes (dummies)
do not store items (non-
empty proper binary trees,
for coding simplicity)

• An inorder traversal of a
binary search trees visits the
keys in increasing order

• The left-most child has the
smallest key

• The right-most child has the
largest key

6

92

41 8

3

4

Example of BST

A binary search tree Not a binary search tree

5

More Examples of BST

• Average depth of a node is O(logN).
• Maximum depth of a node is O(N).
• Where is the smallest key? largest key?

The same set of keys may have different BSTs.

6

Inorder Traversal of BST

• Inorder traversal of BST prints out all the keys in
sorted order.

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

7

Searching BST

• If we are searching for 15, then we are done.
• If we are searching for a key < 15, then we should

search in the left subtree.
• If we are searching for a key > 15, then we should

search in the right subtree.

8

Search Algorithm
• To search for a key k,

we trace a downward
path starting at the root

• The next node visited
depends on the
outcome of the
comparison of k with the
key of the current node

• If we reach a leaf, the
key is not found and we
return v (where the key
should be if it will be
inserted)

• Example:
TreeSearch(4, T.root())

• Running time: ?

Algorithm TreeSearch(k, v)
if T.isExternal (v)

return (v); // or return NO_SUCH_KEY
if k < key(v)

return TreeSearch(k, T.left(v))
else if k = key(v)

return v
else { k > key(v) }

return TreeSearch(k, T.right(v))

6

92

41 8

<

>
=

9

Insertion (distinct keys)
• To perform operation

insertItem(k, o), we search
for key k

• Assume k is not already in
the tree, and let w be the
leaf reached by the search

• We insert k at node w and
expand w into an internal
node using
insertAtExternal(w, (k,e))

• Example:

insertAtExternal(w, (5,e))
with e having key 5

• Running time: ?

6

92

41 8

6

92

41 8

5

<

>

>

w

w

10

Insertion Algorithm (distinct keys)

Algorithm TreeInsert(k, e, v) {
w = TreeSearch(k, v);
T.insertAtExternal(w, k, e);
return w;

}
Algorithm insertAtExternal(w, k, e) {

if (T.isExternal(w) {
make w an internal node, store k and e into w;
add two dummy nodes (leaves) as w’s children;

} else { error condition };
}
• First call: TreeInsert(5, e, T.root()) 11

Insertion (duplicate keys)
Insertion with duplicate keys
• Example: insert(2)
• Call TreeSearch(k,

leftChild(w)) to find the leaf
node for insertion

• Can insert to either the left
subtree or the right subtree
(call TreeSearch(k,
rightChild(w))

Running time: ?

Homework: implement method
getAll(k)

12

Insertion Algorithm (duplicate keys)

Algorithm TreeInsert(k, e, v) {
w = TreeSearch(k, v);
if k == key(w) // key exists

return TreeInsert(k, e, T.left(w)); // ***
T.insertAtExternal(w, k, e);
return w;

}

• First call: TreeInsert(2, e, T.root())
***Note: if inserting the duplicate key into the left subtree,

keep searching the left subtree after a key has been
found.

13

Deletion

• To perform operation removeElement(k), we
search for key k

• Assume key k is in the tree, and let v be the
node storing k

• Two cases:
– Case 1: v has no children
– Case 2: v has exactly one child
– Case 3: v has two children

Deletion: Case 1

• Case 1: v has no
children

• We simply remove v
and its 2 dummy
leaves.

• Replace v by a dummy
node.

• Example: remove 5

6

92

41 8

5

6

92

1 8

15

Deletion: Case 2
• Case 1: v has exactly

one child
• v’s parent will “adopt”

v’s child.
• We connect v’s parent

to v’s child, effectively
removing v and the
dummy node w from the
tree.

• Done by method
removeExternal(w)

• Example: remove 4

6

92

41 8

5

v
w

6

92

51 8

16

Deletion: Case 3

• Case 3: v has two children (and possibly grandchildren,
great-grandchildren, etc.)

• Identify v’s “heir”: either one of the following two nodes:
– the node x that immediately precedes v in an inorder

traversal (right-most node in v’s left subtree)
– the node x that immediately follows v in an inorder

traversal (left-most node in v’s right subtree)
• Two steps:

– copy content of x into node v (heir “inherits” node v);
– remove x from the tree (use either case 1 or case 2

above).

Deletion: Case 3 Example

• Example: remove 3
• Heir = ?

• Running time of deletion
algorithm: ?

• Homework: implement
removeAll(k)

3

1

8

6 9

5

v

x

2

5

1

8

6 9

v

2

18

Notes

• Two steps of case 3:
– copy content of x into node v (heir “inherits” node v);
– remove x from the tree

• if x has no child: call case 1
• if x has one child: call case 2
• x cannot have two children (why?)

• Both cases 1 and 2 can be merged into one and
implemented by method removeExternal().

19

Performance

• Consider a dictionary
with n items
implemented by means
of a binary search tree
of height h
– the space used is O(n)
– methods get(k) , put()

and remove(k) take O(h)
time

• The height h is O(n) in
the worst case and
O(log n) in the best
case

20

Next time …

• AVL trees (10.2)

• BST Java code: section 10.1.3

21

