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Dictionary ADT (9.5.1)

• The dictionary ADT models a 
searchable collection of key-
element items

• The main operations of a 
dictionary are searching, 
inserting, and deleting items

• Multiple items with the same key 
are allowed

• Applications:
– address book
– credit card authorization
– SIN database
– student database

Dictionary ADT methods:
• get(k): if the dictionary has an 

item with key k, returns its 
element, else, returns NULL

• getAll(k): returns an iterator of 
entries with key k

• put(k, o): inserts item (k, o) 
into the dictionary

• remove(k): if the dictionary 
has an item with key k, 
removes it from the dictionary 
and returns its element, else 
returns NULL

• removeAll(k): remove all 
entries with key k; return an 
iterator of these entries.

• size(), isEmpty()
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Binary Search Trees
• A binary search tree is a 

binary tree storing keys (or 
key-element pairs) at its 
internal nodes and satisfying 
the following property:

Let u, v, and w be three 
nodes such that u is in the 
left subtree of v and w is in 
the right subtree of v. We 
have 
key(u) ≤ key(v) ≤ key(w)

• External nodes (dummies) 
do not store items (non-
empty proper binary trees, 
for coding simplicity)

• An inorder traversal of a 
binary search trees visits the 
keys in increasing order

• The left-most child has the 
smallest key

• The right-most child has the 
largest key
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Example of BST

A binary search tree Not a binary search tree
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More Examples of BST

• Average depth of a node is O(logN).
• Maximum depth of a node is O(N).
• Where is the smallest key? largest key?

The same set of keys may have different BSTs.
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Inorder Traversal of BST

• Inorder traversal of BST prints out all the keys in 
sorted order.

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20
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Searching BST

• If we are searching for 15, then we are done.
• If we are searching for a key < 15, then we should 

search in the left subtree.
• If we are searching for a key > 15, then we should 

search in the right subtree.
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Search Algorithm
• To search for a key k, 

we trace a downward 
path starting at the root

• The next node visited 
depends on the 
outcome of the 
comparison of k with the 
key of the current node

• If we reach a leaf, the 
key is not found and we 
return v (where the key 
should be if it will be 
inserted)

• Example: 
TreeSearch(4, T.root())

• Running time: ?

Algorithm TreeSearch( k, v )
if T.isExternal (v)

return (v);      // or return NO_SUCH_KEY
if k < key(v)

return TreeSearch( k, T.left(v) )
else if k = key(v)

return v
else { k > key(v) }

return TreeSearch( k, T.right(v) )
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Insertion (distinct keys)
• To perform operation 

insertItem(k, o), we search 
for key k

• Assume k is not already in 
the tree, and let w be the 
leaf reached by the search

• We insert k at node w and 
expand w into an internal 
node using 
insertAtExternal(w, (k,e))

• Example: 

insertAtExternal(w, (5,e)) 
with e having key 5

• Running time: ?
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Insertion Algorithm (distinct keys)

Algorithm TreeInsert( k, e, v ) {
w = TreeSearch( k, v );     
T.insertAtExternal( w, k, e );
return w;

}
Algorithm insertAtExternal( w, k, e ) {

if ( T.isExternal( w ) {
make w an internal node, store k and e into w;
add two dummy nodes (leaves) as w’s children;

}  else  { error condition };
}
• First call: TreeInsert( 5, e, T.root( ) ) 11

Insertion (duplicate keys)
Insertion with duplicate keys
• Example: insert(2)
• Call TreeSearch(k, 

leftChild(w)) to find the leaf 
node for insertion

• Can insert to either the left 
subtree or the right subtree
(call TreeSearch(k, 
rightChild(w)) 

Running time: ?

Homework: implement method 
getAll(k)
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Insertion Algorithm (duplicate keys)

Algorithm TreeInsert( k, e, v ) {
w = TreeSearch( k, v );
if k == key(w)   //  key exists

return TreeInsert( k, e, T.left( w ) );     // ***
T.insertAtExternal( w, k, e );
return w;

}

• First call: TreeInsert( 2, e, T.root() )
***Note: if inserting the duplicate key into the left subtree, 

keep searching the left subtree after a key has been 
found.
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Deletion

• To perform operation removeElement(k), we 
search for key k

• Assume key k is in the tree, and let v be the 
node storing k

• Two cases: 
– Case 1: v has no children
– Case 2: v has exactly one child
– Case 3: v has two children



Deletion: Case 1

• Case 1: v has no 
children

• We simply remove v
and its 2 dummy 
leaves.

• Replace v by a dummy 
node.

• Example: remove 5
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Deletion: Case 2
• Case 1: v has exactly 

one child
• v’s parent will “adopt”

v’s child.
• We connect v’s parent 

to v’s child, effectively 
removing v and the 
dummy node w from the 
tree.

• Done by method 
removeExternal(w)

• Example: remove 4
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Deletion: Case 3

• Case 3: v has two children (and possibly grandchildren, 
great-grandchildren, etc.)

• Identify v’s “heir”: either one of the following two nodes:
– the node x that immediately precedes v in an inorder

traversal (right-most node in v’s left subtree)
– the node x that immediately follows v in an inorder

traversal (left-most node in v’s right subtree)
• Two steps:

– copy content of x into node v (heir “inherits” node v);
– remove x from the tree (use either case 1 or case 2 

above).

Deletion: Case 3 Example

• Example: remove 3
• Heir = ?

• Running time of deletion 
algorithm: ?

• Homework: implement 
removeAll(k)
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Notes

• Two steps of case 3:
– copy content of x into node v (heir “inherits” node v);
– remove x from the tree 

• if x has no child: call case 1
• if x has one child: call case 2
• x cannot have two children (why?)

• Both cases 1 and 2 can be merged into one and 
implemented by method removeExternal().
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Performance

• Consider a dictionary 
with n items 
implemented by means 
of a binary search tree 
of height h
– the space used is O(n)
– methods get(k) , put()

and remove(k) take O(h) 
time

• The height h is O(n) in 
the worst case and 
O(log n) in the best 
case
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Next time …

• AVL trees (10.2)

• BST Java code: section 10.1.3

21


