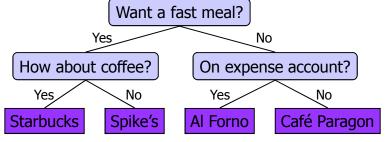


Decision Tree

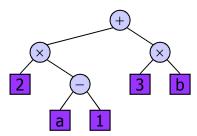
- Binary tree associated with a decision process
 - o internal nodes: questions with yes/no answer
 - o external nodes: decisions
- Example: dining decision



3

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - o internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$



BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - oposition left(p)
 - oposition right(p)
 - oboolean hasLeft(p)
 - oboolean hasRight(p)

 Update methods may be defined by data structures implementing the BinaryTree ADT

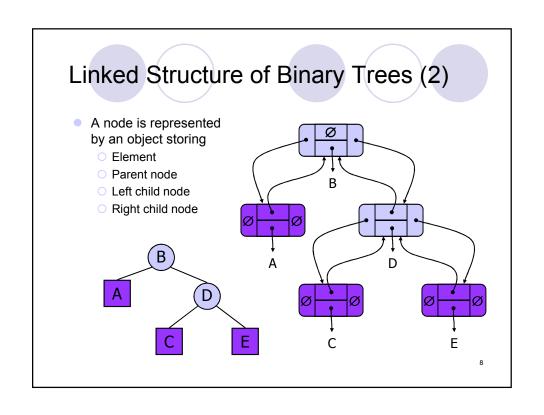
Trees

5

Implementing Binary Trees

- Arrays?
 - Discussed later
- Linked structure?

class BinaryNode { Object element BinaryNode left; BinaryNode right; BinaryNode parent; } figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)



Binary Tree Traversal

- Preorder (node, left, right)
- Postorder (left, right, node)
- Inorder (left, node, right)

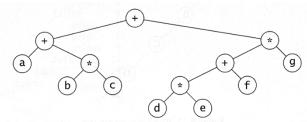


Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

9

Preorder Traversal: Example

- Preorder traversal
 - o node, left, right
 - prefix expression
 - + + a * b c * + * d e f g

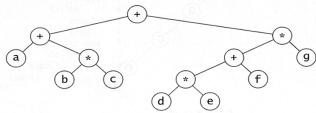


Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

Postorder Traversal: Example

- Postorder traversal
 - o left, right, node
 - postfix expression
 - abc*+de*f+g*+

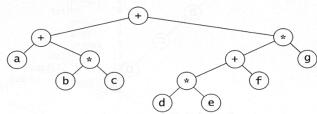


Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

1

Inorder Traversal: Example

- Inorder traversal
 - left, node, right
 - infix expression
 - a + b * c + d * e + f * g

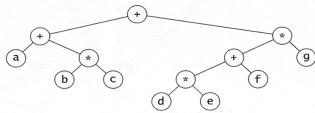


Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

Pseudo-code for Binary Tree Traversal

Algorithm Preorder(x)

Input: x is the root of a subtree.

- 1. if $x \neq \text{NULL}$
- then output key(x);
- 3. Preorder(left(x));
- Preorder(right(x));

Algorithm Postorder(x)

Input: x is the root of a subtree.

- 1. if $x \neq \text{NULL}$
- then Postorder(left(x));
- 3. Postorder(right(x));
- output key(x);

Algorithm Inorder(x)

Input: x is the root of a subtree.

- 1. if $x \neq \text{NULL}$
- 2. **then** Inorder(left(x));
- 3. output key(x);
- Inorder(right(x));

13

Properties of Proper Binary Trees

- A binary trees is <u>proper</u> if each node has either zero or two children.
- Level: depth

The root is at level 0 Level *d* has at most 2^{*d*} nodes

- Notation:
 - n number of nodes
 - e number of external (leaf) nodes
 - i number of internal nodes
 - h height

$$n = e + i$$

$$e = i + 1$$

$$h+1 \le e \le 2^h$$

$$n = 2e - 1$$

$$h \leq i \leq 2^h - 1$$

$$2h+1 \le n \le 2^{h+1}-1$$

$$\log_2 e \le h \le e - 1$$

$$\log_2(i+1) \le h \le i$$

$$\log_2(n+1) - 1 \le h \le (n-1)/2$$

Properties of (General) Binary Trees

- Level: depth
 The root is at level 0
 Level d has at most 2^d nodes
- Notation:
 - n number of nodes
 - e number of external (leaf) nodes
 - i number of internal nodes
 - h height

$$h+1 \le n \le 2^{h+1}-1$$

$$1 \le e \le 2^h$$

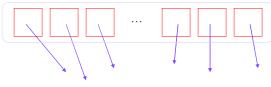
$$h \leq i \leq 2^h - 1$$

$$\log_2(n+1) - 1 \le h \le n - 1$$

15

Array-Based Implementation

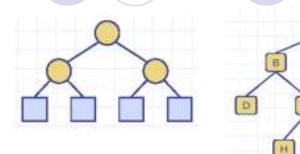
Nodes are stored in an array.



- Let rank(v) be defined as follows:
 - \blacksquare rank(root) = 1
 - if v is the left child of parent(v), rank(v) = 2 * rank(parent(v))
 - if v is the right child of parent(v), rank(v) = 2 * rank(parent(v)) + 1



Array Implementation of Binary Trees



Each node *v* is stored at index *i* defined as follows:

- If v is the root, i = 1
- The left child of v is in position 2i
- The right child of v is in position 2i + 1
- The parent of v is in position ???

17

Space Analysis of Array Implementation

- n: number of nodes of binary tree T
- p_M : index of the rightmost leaf of the corresponding **full** binary tree (or size of the full tree)
- N: size of the array needed for storing T; $N = p_M + 1$

Best-case scenario: balanced, full binary tree $p_M = n$

Worst case scenario: unbalanced tree

- Height h = n 1
- Size of the corresponding full tree:

$$p_M = 2^{h+1} - 1 = 2^n - 1$$

 $N = 2^n$

Space usage: $O(2^n)$

Arrays versus Linked Structure

Linked lists

- Slower operations due to pointer manipulations
- Use less space if the tree is unbalanced
- AVL trees: rotation (restructuring) code is simple

Arrays

- Faster operations
- Use less space if the tree is balanced (no pointers)
- AVL trees: rotation (restructuring) code is complex

19

Next time ...

Binary Search Trees (10.1)