Binary Trees (7.3)

CSE 2011
Winter 2011

9 February 2011

Binary Trees

A tree in which each node can have at most two
children.

Generic
binary tree

The depth of an “average” binary tree is considerably
smaller than N. In the worst case, the depth can be
as large as N - 1.

Worst-case
binary tree

Decision Tree

Binary tree associated with a decision process
internal nodes: questions with yes/no answer
external nodes: decisions

Example: dining decision

[Want a fast meal?]
Yes No

[How about coffee?] [On expense account?]

Yes No Yes No

Arithmetic Expression Tree

Binary tree associated with an arithmetic expression
internal nodes: operators
external nodes: operands
Example: arithmetic expression tree for the
expression (2 x (a—1) + (3 x b))

BinaryTree ADT

The BinaryTree ADT
extends the Tree
ADT, i.e., it inherits
all the methods of
the Tree ADT

Additional methods:
position left(p)
position right(p)
boolean hasLeft(p)
boolean hasRight(p)

Trees

Update methods
may be defined by
data structures
implementing the
BinaryTree ADT

Implementing Binary Trees

Arrays?
Discussed later

Linked structure?

Linked Structure of Binary Trees

class BinaryNode {
Object element
BinaryNode left;
BinaryNode right;
BinaryNode parent;

Figure 4.14 Expressiontree for (a + b * ¢) + ((d * e + f) * g)

Linked Structure of Binary Trees (2)

\J
!
}
D

A node is represented
by an object storing
Element
Parent node
Left child node
Right child node

@
!
}
B

Binary Tree Traversal

Preorder (node, left, right)
Postorder (left, right, node)
Inorder (left, node, right)

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d * e + f) * @)

Preorder Traversal: Example

Preorder traversal
node, left, right
prefix expression
++a*bc*+*defg

Figure 4.14 Expressiontree for (a + b * ¢) + ((d * e + f) * g)

Postorder Traversal: Example

Postorder traversal
left, right, node
postfix expression
abc*+de*f+g*+

Figure 4.14 Expressiontreefor (a + b *) + ((d * e + f) * g)

Inorder Traversal: Example

Inorder traversal
left, node, right
infix expression
a+tb*c+d*e+f*g

Figure 4.14 Expressiontree for (a + b * ¢) + ((d * e + f) * g)

Pseudo-code for Binary Tree Traversal

Algorithm Preorder(x)

Input: = is the root of a subtree.
1. ifz % NULL

2. then output key(z);

3. Preorder(left(z));
4. Preorder(right(z));

Algorithm Postorder(x) Algorithm Inorder(x)

Input: x is the root of a subtree. Input: z is the root of a subtree.
1. ifz% NULL 1. ifz# NULL

2. then Postorder(left(z)); 2. then Inorder(left(z));

3. Postorder(right(z)); 3. output key(z);

4. output key(z); 4. Inorder(right(z));

Properties of Proper Binary Trees

A binary trees is proper if n=e+i
each node has either zero

or two children. e=i+l
Level: depth h+l <e<2
The root is at level 0
Level d has at most 29 nodes n=2e-1
Notation: h <i<2h-1
n number of nodes 2h+1 < n <2M1_]
e number of external
(leaf) node§ log,e< h < e-1
i zgdmebser of internal log, i+ 1)< h < i

h height log,(n+1)-1< h<(n-1)/2

14

Properties of (General) Binary Trees

Level: depth h+l1 < n <2W1_]

The root is at level 0

Level d has at most 2 1< e <2k

nodes

Notation: h <i<2h_1

n number of nodes

e number of external log,(m+1)-1< h< n-1

(leaf) nodes

i number of internal
nodes

h height

Array-Based Implementation

Nodes are stored in an array.

| |
Ny
Let rank(v) be defined as follows:
rank(root) = 1

if v is the left child of parent(v),
rank(v) = 2 * rank(parent(v))

if v is the right child of parent(v),
rank(v) =2 * rank(parent(v)) + 1

Trees

Array Implementation of Binary Trees

Each node v is stored at index i defined as follows:
If vis the root, i = 1
The left child of vis in position 2/
The right child of v is in position 2i + 1
The parent of v is in position ?7?7?

Space Analysis of Array Implementation

n: number of nodes of binary tree T

py- index of the rightmost leaf of the corresponding full
binary tree (or size of the full tree)

N: size of the array needed for storing 7; N = p,, + 1
Best-case scenario: balanced, full binary tree p,, = n
Worst case scenario: unbalanced tree

Height h=n -1

Size of the corresponding full tree:

Py = QhHl_ |=2n_ |

N=2n
Space usage: O(27)

Arrays versus Linked Structure

Linked lists

Slower operations due to
pointer manipulations

Use less space if the tree
is unbalanced

AVL trees: rotation
(restructuring) code is
simple

Arrays
Faster operations

Use less space if the tree
is balanced (no pointers)

AVL trees: rotation
(restructuring) code is
complex

Next time ...

Binary Search Trees (10.1)

20

10

