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Binary Trees

� A tree in which each node can have at most two 

children.

� The depth of an “average” binary tree is considerably 

smaller than N.  In the worst case, the depth can be 

as large as N – 1.

Generic 

binary tree

Worst-case

binary tree
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Decision Tree

� Binary tree associated with a decision process

� internal nodes: questions with yes/no answer

� external nodes: decisions

� Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No
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Arithmetic Expression Tree

� Binary tree associated with an arithmetic expression
� internal nodes: operators

� external nodes: operands

� Example: arithmetic expression tree for the 
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b
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BinaryTree ADT

� The BinaryTree ADT 

extends the Tree 

ADT, i.e., it inherits 

all the methods of 

the Tree ADT

� Additional methods:

�position left(p)

�position right(p)

�boolean hasLeft(p)

�boolean hasRight(p)

� Update methods 

may be defined by 

data structures 

implementing the 

BinaryTree ADT

Implementing Binary Trees

�Arrays?
�Discussed later

�Linked structure?
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Linked Structure of Binary Trees

class BinaryNode {

Object element

BinaryNode left;

BinaryNode right;

BinaryNode parent;

}
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Linked Structure of Binary Trees (2)

� A node is represented 

by an object storing

� Element

� Parent node

� Left child node

� Right child node

B

DA

C E

∅∅∅∅ ∅∅∅∅

∅∅∅∅ ∅∅∅∅ ∅∅∅∅ ∅∅∅∅

B

A D

C E

∅∅∅∅
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Binary Tree Traversal

� Preorder (node, left, right)

� Postorder (left, right, node)

� Inorder (left, node, right)
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Preorder Traversal: Example

� Preorder traversal

� node, left, right

� prefix expression

� + + a * b c * + * d e f g
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Postorder Traversal: Example

� Postorder traversal

� left, right, node

� postfix expression

� a b c * + d e * f + g * +
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Inorder Traversal: Example

� Inorder traversal

� left, node, right

� infix expression

� a + b * c + d * e + f * g
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Pseudo-code for Binary Tree Traversal
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Properties of Proper Binary Trees

� A binary trees is proper if 
each node has either zero 
or two children.

� Level: depth

The root is at level 0

Level d has at most 2d nodes

� Notation:

n number of nodes

e number of external 
(leaf) nodes

i number of internal 
nodes

h height

n ==== e + i

e ==== i ++++ 1

h+1 ≤≤≤≤ e ≤≤≤≤ 2h

n ==== 2e −−−− 1

h       ≤≤≤≤ i  ≤≤≤≤ 2h – 1

2h+1 ≤≤≤≤ n  ≤≤≤≤ 2h+1 – 1

log2 e ≤≤≤≤ h  ≤≤≤≤ e – 1

log2 (i ++++ 1) ≤≤≤≤ h  ≤≤≤≤ i

log
2
(n ++++ 1) −−−− 1 ≤≤≤≤ h ≤≤≤≤ (n −−−− 1)////2
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Properties of (General) Binary Trees

� Level: depth

The root is at level 0

Level d has at most 2d

nodes

� Notation:

n number of nodes

e number of external 
(leaf) nodes

i number of internal 
nodes

h height

h+1 ≤≤≤≤ n  ≤≤≤≤ 2h+1 – 1

1 ≤≤≤≤ e  ≤≤≤≤ 2h

h       ≤≤≤≤ i  ≤≤≤≤ 2h – 1

log
2
(n ++++ 1) −−−− 1 ≤≤≤≤ h ≤≤≤≤ n −−−− 1
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Array-Based Implementation

� Nodes are stored in an array.

…

� Let rank(v) be defined as follows:

� rank(root) = 1

� if v is the left child of parent(v), 

rank(v) = 2 * rank(parent(v))

� if v is the right child of parent(v), 

rank(v) = 2  * rank(parent(v)) + 1

1
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Array Implementation of Binary Trees

Each node v is stored at index i defined as follows:

� If v is the root, i = 1

� The left child of v is in position  2i

� The right child of v is in position  2i + 1

� The parent of v is in position ???
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Space Analysis of Array Implementation

� n: number of nodes of binary tree T

� pM: index of the rightmost leaf of the corresponding full

binary tree (or size of the full tree)

� N: size of the array needed for storing T; N = pM + 1

Best-case scenario: balanced, full binary tree pM = n

Worst case scenario: unbalanced tree

� Height h = n – 1

� Size of the corresponding full tree: 

pM = 2h+1 – 1= 2n – 1

� N = 2n 

Space usage: O(2n)
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Arrays versus Linked Structure

Linked lists

� Slower operations due to 

pointer manipulations

� Use less space if the tree 

is unbalanced

� AVL trees: rotation 

(restructuring) code is 

simple

Arrays

� Faster operations

� Use less space if the tree 

is balanced (no pointers)

� AVL trees: rotation 

(restructuring) code is 

complex
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Next time J

� Binary Search Trees (10.1)


