
1

1

Binary Trees (7.3)

CSE 2011

Winter 2011

9 February 2011

2

Binary Trees

� A tree in which each node can have at most two

children.

� The depth of an “average” binary tree is considerably

smaller than N. In the worst case, the depth can be

as large as N – 1.

Generic

binary tree

Worst-case

binary tree

2

3

Decision Tree

� Binary tree associated with a decision process

� internal nodes: questions with yes/no answer

� external nodes: decisions

� Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

4

Arithmetic Expression Tree

� Binary tree associated with an arithmetic expression
� internal nodes: operators

� external nodes: operands

� Example: arithmetic expression tree for the
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b

3

Trees 5

BinaryTree ADT

� The BinaryTree ADT

extends the Tree

ADT, i.e., it inherits

all the methods of

the Tree ADT

� Additional methods:

�position left(p)

�position right(p)

�boolean hasLeft(p)

�boolean hasRight(p)

� Update methods

may be defined by

data structures

implementing the

BinaryTree ADT

Implementing Binary Trees

�Arrays?
�Discussed later

�Linked structure?

6

4

7

Linked Structure of Binary Trees

class BinaryNode {

Object element

BinaryNode left;

BinaryNode right;

BinaryNode parent;

}

8

Linked Structure of Binary Trees (2)

� A node is represented

by an object storing

� Element

� Parent node

� Left child node

� Right child node

B

DA

C E

∅∅∅∅ ∅∅∅∅

∅∅∅∅ ∅∅∅∅ ∅∅∅∅ ∅∅∅∅

B

A D

C E

∅∅∅∅

5

9

Binary Tree Traversal

� Preorder (node, left, right)

� Postorder (left, right, node)

� Inorder (left, node, right)

10

Preorder Traversal: Example

� Preorder traversal

� node, left, right

� prefix expression

� + + a * b c * + * d e f g

6

11

Postorder Traversal: Example

� Postorder traversal

� left, right, node

� postfix expression

� a b c * + d e * f + g * +

12

Inorder Traversal: Example

� Inorder traversal

� left, node, right

� infix expression

� a + b * c + d * e + f * g

7

13

Pseudo-code for Binary Tree Traversal

14

Properties of Proper Binary Trees

� A binary trees is proper if
each node has either zero
or two children.

� Level: depth

The root is at level 0

Level d has at most 2d nodes

� Notation:

n number of nodes

e number of external
(leaf) nodes

i number of internal
nodes

h height

n ==== e + i

e ==== i ++++ 1

h+1 ≤≤≤≤ e ≤≤≤≤ 2h

n ==== 2e −−−− 1

h ≤≤≤≤ i ≤≤≤≤ 2h – 1

2h+1 ≤≤≤≤ n ≤≤≤≤ 2h+1 – 1

log2 e ≤≤≤≤ h ≤≤≤≤ e – 1

log2 (i ++++ 1) ≤≤≤≤ h ≤≤≤≤ i

log
2
(n ++++ 1) −−−− 1 ≤≤≤≤ h ≤≤≤≤ (n −−−− 1)////2

8

15

Properties of (General) Binary Trees

� Level: depth

The root is at level 0

Level d has at most 2d

nodes

� Notation:

n number of nodes

e number of external
(leaf) nodes

i number of internal
nodes

h height

h+1 ≤≤≤≤ n ≤≤≤≤ 2h+1 – 1

1 ≤≤≤≤ e ≤≤≤≤ 2h

h ≤≤≤≤ i ≤≤≤≤ 2h – 1

log
2
(n ++++ 1) −−−− 1 ≤≤≤≤ h ≤≤≤≤ n −−−− 1

Trees 16

Array-Based Implementation

� Nodes are stored in an array.

…

� Let rank(v) be defined as follows:

� rank(root) = 1

� if v is the left child of parent(v),

rank(v) = 2 * rank(parent(v))

� if v is the right child of parent(v),

rank(v) = 2 * rank(parent(v)) + 1

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J

9

17

Array Implementation of Binary Trees

Each node v is stored at index i defined as follows:

� If v is the root, i = 1

� The left child of v is in position 2i

� The right child of v is in position 2i + 1

� The parent of v is in position ???

18

Space Analysis of Array Implementation

� n: number of nodes of binary tree T

� pM: index of the rightmost leaf of the corresponding full

binary tree (or size of the full tree)

� N: size of the array needed for storing T; N = pM + 1

Best-case scenario: balanced, full binary tree pM = n

Worst case scenario: unbalanced tree

� Height h = n – 1

� Size of the corresponding full tree:

pM = 2h+1 – 1= 2n – 1

� N = 2n

Space usage: O(2n)

10

19

Arrays versus Linked Structure

Linked lists

� Slower operations due to

pointer manipulations

� Use less space if the tree

is unbalanced

� AVL trees: rotation

(restructuring) code is

simple

Arrays

� Faster operations

� Use less space if the tree

is balanced (no pointers)

� AVL trees: rotation

(restructuring) code is

complex

20

Next time J

� Binary Search Trees (10.1)

