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Trees

Linear access time of linked lists is prohibitive
Does there exist any simple data structure for which
the running time of most operations (search, insert,
delete) is O(log N)?
Trees
Basic concepts
Tree traversal
Binary trees
Binary search trees
AVL trees




General Trees (7.1)

In computer science, a
tree is an abstract model
of a hierarchical
structure

A tree consists of nodes
with a parent-child
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Recursive Definition

A tree is a collection of nodes.
The collection can be empty.
Otherwise, a tree consists of a distinguished node r
(the root), and zero or more nonempty subtrees T,,
T,, ..., Ty, each of whose roots is connected by a
directed edge fromr.

Figure 4.1 Generic tree




Applying the Recursive Definition

void operation ( T) {
if (T is not empty )
for every subtree T, of T
operation( T;)

Figure 4.1 Generic tree

Terminologies

Child and Parent
Every node except the root has one parent
A node can have zero or more children
Leaves: nodes with no children
Also called external nodes
Internal node: having one or more children
Siblings: nodes having the same parent
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Figure 4.2 A tree




Terminologies (2)

Ancestor and descendant
If there is a path from n1 to n2 then

nlis an ancestor of n2 (parent, grandparent, great-
grandparent, etc.)

n2 is a descendant of n1 (child, grandchild, great-grandchild,
etc.)

A node is its own ancestor and descendant
Proper ancestor and proper descendant if n1 = n2
Subtree: tree consisting of a node and its descendants

Figure 4.2 A tree

Terminologies (3)

Path
a sequence of edges
Length of a path
number of edges on the path
Depth of a node
length of the unique path from the root to that node

Figure 4.2 A tree




Terminologies (4)

Height of a node
length of the longest path from that node to a leaf
all leaves are at height O

The height of a tree = the height of the root
= the depth of the deepest leaf

Figure 4.2 A tree

Example: UNIX Directory

fusr*
mark* alex* bill*
book* course* junk ju|nk work# course*
chlor  ch2r ch3r cop3530* cop3212+*
fall98*  spro9*  sum99* fallog* fall99*
sy[l,r sy|].r sy|1.r grades progl.r  prog2r prog2r progl.r  grades

Figure 4.5 unix directory

10




Example: Expression Trees

Figure 4.14 Expressiontreefor (a + b * o) + ((d* e+ f) * g)

Leaves are operands (constants or variables)
The internal nodes contain operators
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Tree ADT

We use positions to abstract Query methods:
nodes (position = node) = boolean isinternal(p)
Generic methods: = boolean isExternal(p)
integer size() = boolean isRoot(p)
boolean isEmpty() 0 Update method:
Iterator elements() = oObject replace (p, e):
positionlterator positions() replace with e and return
Accessor methods: element stored at node p
position root() 0 Additional update methods

may be defined by data
structures implementing the
Tree ADT

position parent(p)
positionlterator children(p)

Trees 12




Implementing Trees

Arrays ?
Linked “lists” (pointers) ?
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Linked Structure for Trees

A node is represented by
an object storing

Element

Parent node

Sequence of children
nodes




Tree Traversal Algorithms (7.2)

Preorder
Visit v first
Then visit the descendants of v
Postorder
Visit the descendants of v first
Then visit v last

Depth and Height
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Preorder Traversal

A tra_versal visits the nodes of a Algorithm preOrder(v)
tree in a systematic manner visit(v)

In a preorder traversal, a node is .

visited before its descendants for each child w of v
Application: print a structured preOrder (w)
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An Example
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Postorder Traversal

In a postorder traversal, a
node is visited after its
descendants

Application: compute space
used by files in a directory and
its subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)




Applications

Either preorder traversal or postorder traversal can be
used when the order of computation is not important.

Example: printing the contents of a tree (in any order)

Preorder traversal is required when we must perform a
computation for each node before performing any
computations for its descendents.

Example: Printing the headings of chapters, sections,
sub-sections of a book.

Postorder traversal is needed when the computation for
a node v requires the computations for v’s children to be
done first.

Example: Given a file system, compute the disk space
used by a directory.

19

Example: Computing Disk Space
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Example: UNIX Directory Traversal

fusr*
mark* alex*® bill*
book* course* junk Jjunk work* course*
chlr  ch2r ch3r cop3530* cop3212#*

fall98*  spr99*  sum99* fall9g* fall9o*

syl.r syl.r sylr  grades progl.r prog2.r prog2r progl.r  grades
Figure 4.5 unix directory
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Preorder Postorder

Jusr chl.r 3

mark ch2.r 2

book ch3.r 4

chl.r book 10

ch2.r syl.r 1

ch3.r fal198 2

course syl.r 5

cop3530 spr99 6

fal198 syl.r 2

syl.r sum99 3

spro9 cop3530 12

syl.r course 13

sum99 junk 6

syl.r mark 30

Junke junk 8

alex alex 9

junk work 1

bill grades 3

work progl.r 4

course prog2.r 1

cop3212 fal198 9

fal198 prog2.r 2

grades progl.r 7

progl.r grades 9

prog2.r fa1199 19

fal199 cop3212 29

prog2.r course 30
progl.r bill 32 22

grades Jusr 72
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Depth

Depth of node v: length of the unique path (number of
edges) from the root to v.

Recursive definition:
If v is the root, then depth of v is 0.
Otherwise, depth of v is 1 plus the depth of v’'s parent.

Figure 4.2 A tree 23

Algorithm depth

Algorithm depth( T, v ) {
if ( isRoot( v ) )
return O;
return ( 1 + depth( T, parent( v ) ) );
3

Running time = ?
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Height

Height of a node
length of the longest path from that node to a leaf
all leaves are at height O

The height of a tree = the height of the root
= the depth of the deepest leaf

Figure 4.2 A tree
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Computing the Height of a Tree

The height of a tree = the depth of the deepest leaf
Algorithm height( T ) {
h = 0;
for every node v Iin T
if( isExternal( v ) )
h = max( h, depth( T, v ) );
}

Running time: O(n) + X,(d, + 1) for all external nodes v
%, d, = 0O(n?) in the worst case = not efficient
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Recursive Definition of Height

The height of a node v in a tree T is defined as follows:
If v is a leaf node, then height of v is O.

Otherwise, height of v is 1 plus the maximum height
of a child of v.

Figure 4.2 A tree
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Algorithm height2

Algorithm height2( T, v ) {
iT ( 1skxternal( v ) )
return O;
h = 0;
for every child w of v
h = max( h, height2( T, w ) );
return( 1 + h );
¥
Height of the tree: H = height2( T, root );
Running time: X,(c, + 1) = O(?)
We visit each node exactly once.
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Next time ...

Binary Trees (7.3)
Binary Search Trees (10.1)
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