YORK UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING 2010 FALL TERM EXAMINATION Course Number: CSE2001

Title: Introduction to Theory of Computation

Duration: 3 hours

No aids allowed.

- There should be 10 pages in the exam, including this page.
- Write all answers on the examination paper. If your answer does not fit in the space provided, you can continue your answer on the back of a page or on page 10, indicating clearly that you have done so.
- You may use Church's Thesis in your answer to any question.
- Write legibly.

Name	
(Please underline your family name.)	
Student Number	

- 1. _____/6
- 2. _____/5 3. _____/2
- 4. _____/9
- 5. _____/3
- 6. ____/3
- 7. _____/3
- 8. ____/7
- 9. ____/4
- 10. ____/4
- 11. _____/4
- **Total:** _____/50

1. [6 marks] For each of the following languages, you must determine whether the language is regular, context-free, decidable, recognizable or not recognizable. For each language, circle the *leftmost* correct answer. For example, if a language is both recognizable and decidable, but not context-free, circle decidable.

(a)	$\{0^n 1^n 2^n$:n	$\in \mathbb{N}\}.$
-----	-----------------	----	---------------------

	regular	context-free	decidable	recognizable	not recognizable
(b)	$\{0^n 1^n : n \in \mathbb{N}\}$				
	regular	context-free	decidable	recognizable	not recognizable
(c)	$\{0^n: n \in \mathbb{N}\}.$				
	regular	context-free	decidable	recognizable	not recognizable
(d)	$\{\langle M \rangle : M \text{ is a } \}$	Turing machine that	accepts ε }.		
	regular	context-free	decidable	recognizable	not recognizable
(e)	$\{\langle M \rangle : M \text{ is a } \}$	Turing machine and	there is some inpu	t string that causes M	<i>I</i> to run forever}.
	regular	context-free	decidable	recognizable	not recognizable
(f)	$\{\langle M,w\rangle:M$ is	a Turing machine an	d w is a string and	d M halts on input w) }.

regular context-free decidable recognizable not recogn
--

- **2.** [5 marks] Let L and L' be languages.
- [3] (a) Give a careful definition of what $L \leq_m L'$ means.

[2] (b) We proved the following statement in class: If $L \leq_m L'$ and L' is decidable, then L is also decidable. Give an outline of the proof of this statement.

- **3.** [2 marks] Suppose you would like to prove that some language L_3 is recognizable but not decidable. You could do this by proving *two* of the following statements. Which two?
 - 1. $\overline{L_3}$ is recognizable
 - 2. $HALT_{TM} \leq_m L_3$
 - 3. $EQ_{TM} \leq_m L_3$
 - 4. $L_3 \leq_m EQ_{TM}$
 - 5. $L_3 \leq_m A_{TM}$

Recall that $HALT_{TM} = \{ \langle M, w \rangle : M \text{ is a Turing machine and } M \text{ halts on input } w \}$ and $EQ_{TM} = \{ \langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are Turing machines that accept exactly the same set of strings} \}.$

- 4. [9 marks] For each of the following statements, circle TRUE if the statement is true, or circle FALSE otherwise, and then prove that your answer is correct.
- [3] (a) The intersection of a regular language and a decidable language is always regular.

TRUE FALSE

[3] (b) The union of two decidable languages is always decidable.

TRUE FALSE

- [3] (c) The complement of a context-free language is always context-free.
 - TRUE FALSE

5. [3 marks] For a positive integer n, let B(n) be the binary representation of n with no leading 0's. Let $L_5 = \{B(n) : n \text{ is a positive integer that is not divisible by 3}\}$. Draw the transition diagram of a deterministic finite automaton that decides L_5 . You do *not* have to prove your answer is correct.

Hint: Think about how you would determine whether a number represented in decimal, like 231415123213, is divisible by 3. Then use the same algorithm, except in binary.

6. [3 marks] Give a regular expression for the set of all binary strings that do not contain 101 as a substring. You do *not* have to prove your answer is correct.

7. [3 marks] Let $L_7 = \{x : x \in \{0,1\}^* \text{ and } x = x^R \text{ and } |x| \text{ is a multiple of } 4\}$. Give a context-free grammar for the language L_7 . You do *not* have to prove your answer is correct.

8. [7 marks] Let L_8 be the set of all binary strings that contain equal numbers of 0's and 1's. For example, the string 01001110 is in L_8 because it contains 4 0's and 4 1's, but the string 0011101 is not in L_8 because it contains more 1's than 0's. Consider the following context-free grammar G, which has starting symbol S.

$$S \to SS \mid 0S1 \mid 1S0 \mid \epsilon$$

[4] (a) Give a formal proof of the following claim.

Claim: For every $n \ge 1$, if x is any binary string that can be generated from S in n steps, then x contains equal numbers of 0's and 1's.

[1] (b) The claim in part (a) proves one direction of the "iff" in the following statement: The grammar G generates a string x iff $x \in L_8$. Which direction does it prove? Circle the correct answer.

IF ONLY IF

[2] (c) State a claim that you could prove by induction to prove the *other* direction of the "iff".

9. [4 marks] Let $L_9 = \{x \# y : x, y \in \{0, 1\}^* \text{ and } x \text{ is a substring of } y\}$. Prove that L_9 is not regular.

10. [4 marks] If string y is the last part of a string z, y is called a suffix of z. For any language $L \subseteq \Sigma^*$, let SUFFIX(L) be the set of all suffixes of strings in L. Formally,

 $SUFFIX(L) = \{y : \text{there exists an } x \in \Sigma^* \text{ such that } xy \in L\}.$

Prove that for every recognizable language L, SUFFIX(L) is also recognizable.

11. [4 marks] Let $L_{11} = \{ \langle M, F \rangle : M \text{ is a Turing machine and } F \text{ is a DFA and there is no string that is accepted by both <math>M$ and $F \}$. Prove that L_{11} is not decidable.

This (nearly) blank page is for extra work space.