Writing Shell Scripts — part 1

CSE 2031
Fall 2010

27 November 2010

What Is a Shell?

A program that
interprets your request
to run other programs i1y
Most common Unix
shells:
Bourne shell (sh)
C shell (csh)
Korn shell (ksh)
Bourne-again shell
(bash)
In this course we focus
on Bourne shell (sh).

The Bourne Shell

A high level programming language

Processes groups of commands stored in files
called scripts
Includes

variables

control structures

processes

signals

Executable Files

Contain one or more shell commands.
These files can be made executable.
indicates a comment
Except on line 1 when followed by an “V”
% cat welcome

#!/bin/sh
echo ‘Hello World!'’

Executable Files: Example

% cat welcome

#!/bin/sh

echo ‘Hello World!’

% welcome

welcome: execute permission denied
% chmod u+x welcome

% 1ls -1 welcome

-rwxr--r-- 1 lan grad 20 Aug 29 2010 welcome
% welcome

Hello World!

% welcome > greet_them

% cat greet_ them

Hello World!

Executable Files (cont.)

If the file is not executable, use “sh” followed by
the file name to run the script.

Example:
% chmod u-x welcome
% 1ls -1 welcome
rw-r--r-- 1 lan grad 20 Aug 29 2010 welcome
% sh welcome
Hello World!

Processes

Consider the welcome program.

fork, wait
cwsrm” # 777777777 e S (Continuatio
fork, wait ____~ Process 1)
m ¢ iiiiiiiiiiii m
chi
g;ﬁg I @ terminates
=" NN
welcome ;(ec echo
@ B s) Execution
time

Processes: Explanation

Every program is a “child” of some other program.
Shell fires up a child shell to execute script.

Child shell fires up a new (grand)child process for each
command.

Shell (parent) sleeps while child executes.
Every process (executing a program) has a unique PID.

Parent does not sleep while running background
processes.

Variables: Three Types

Standard UNIX variables
Consist of shell variables and environment variables.
Used to tailor the operating environment to suit your needs.
Examples: TERM, HOME, PATH
To display your environment variables, type “set”.

User variables: variables you create yourself.

Positional parameters
Also called read-only variables, automatic variables.
Store the values of command-line arguments.

User Variables

Each variable has two parts:
a hame
a value

Syntax:

name=value
No space around the equal sign!
All shell variables store strings (no numeric values).
Variable name: combinations of letters, numbers, and
underscore character (_) that do not start with a
number.
Avoid existing commands and environment variables.

Shell stores and remembers these variables and
supplies value on demand.

User Variables (2)

These are variables you,
the user, create, read and
change.

To use a variable:
$varname

Variable substitution
operator $ tells the shell
to substitute the value of
the variable name.

#!/bin/sh
dir=/usr/include/
echo $dir

echo dir

ls $dir | grep ‘ma’
Output:
/usr/include/

dir

malloc.h math.h
numa.h semaphore.h

echo and Variables

What if I'd want to display the following?

$dir

Two ways to prevent variable substitution:

echo ‘$dir’
echo \$dir
Note:

echo “$dir” does the same as

echo $dir

Command Line Arguments

Command line arguments stored in variables called
positional parameters.

These parameters are named $1 through $9.
Command itself is in parameter $0.

In diagram format:

command argl arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9
$0 $1 $2 $3 $4 $5 $6 $7 $8 $9

Arguments not present get null (absence of) value

Example 1

% cat display_args

#!/bin/sh

echo First four arguments from the
echo command line are: $1 $2 $3 $4

% display args William Mary Richard James
First four arguments from the
command line are: William Mary Richard James

Example 2

% cat chex

#!/bin/sh

Make a file executable
chmod u+x $1

echo $1 is now executable:
1s -1 $1

% sh chex chex
chex is now executable:
—“IWX----—-- 1 utn faculty 86 Nov 12 11:34 chex

% chex showargs
showargs is now executable:
—“IWX-----—- 1 utn faculty 106 Nov 2 14:26 showargs

Command Line Arguments (2)

A macro is a stand-in for one or more variables
$# represents the number of command line arguments
$* represents all the command line arguments
$@ represents all the command line arguments

% cat check_args

#!'/bin/sh

echo “There are $# arguments.”

echo “All the arguments are: $*”

or echo “All the arguments are: $@”

% check_args Mary Tom Amy Tony
There are 4 arguments.
All the arguments are: Mary Tom Amy Tony

Command Line Arguments (3)

Note: $# does NOT include the program name
(unlike argc in C programs)

What if the number of arguments is more than
9? How to access the 10, 11t etc.?

Use shift operator.

shift Operator

shift promotes each argument one position to the left.
Operates as a conveyor belt.
Allows access to arguments beyond $9.

shifts contents of $2 into $1

shifts contents of $3 into $2

shifts contents of $4 into $3

etc.

Eliminates argument(s) positioned immediately after the
command.

Syntax:
shift # shifting arguments one position to the left

After a shift, the argument count stored in $# is
automatically decremented by one.

Example 1

% cat args

#!'/bin/sh

echo "argl = $1, arg8 = $8, arg9 = $9, ARGC = S$#"
myvar=$§1 # save the first argument

shift

echo "argl = $1, arg8 = $8, arg9 = $9, ARGC = S$#"

echo "myvar = $myvar”

$args 1 2 34567 8 9 10 11 12
8, arg9 = 9, ARGC = 11
10, ARGC = 10

argl = 1, arg8

argl = 2, arg8 = 9, arg9

myvar = 1

Example 2

% cat show_shift

#!'/bin/sh

echo “argl=$1l, arg2=$2, arg3=$3”"
shift

echo “argl=$1l, arg2=$2, arg3=$3”"
shift

echo “argl=$1l, arg2=$2, arg3=$3”"

% show_shift William Richard Elizabeth
argl=William, arg2=Richard, arg3=Elizabeth
argl=Richard, arg2=Elizabeth, arg3=
argl=Elizabeth, arg2= , arg3=

20

10

Example 3

% my copy dir name filenamel filename2 filename3 ..

This shell script copies all the files to
directory “dir name”

% cat my_ copy

#!/bin/sh

Script allows user to specify, as the 15t argument,
the directory where the files are to be copied.
location=$1

shift

files=$*

cp $files $location

21

Shifting Multiple Times

Shifting arguments three positions: 3 ways to write it
shift

shift

shift

shift; shift; shift

shift 3

22

11

User Variables and Quotes

name=value

If value contains no space
= no need to use quotes ...

#!/bin/sh
dir=/usr/include/
echo $dir

... unless you want to protect
the literal, in which case use
single quotes.

% cat quotes

#!/bin/sh

Test values with quotes
myvarl=$100

myvar2='$100"

echo The price is $myvarl
echo The price is $myvar2

% quotes 5000

The price is 500000
The price is $100

23

User Variables and Quotes (2)

If value contains one or more spaces:
use single quotes for NO interpretation of metacharacters (protect

the literal)

use double quotes for interpretation of metacharacters

% cat quotes
#!/bin/sh
myvar= whoami "

squotes='Today is ‘date’, $myvar.'
dquotes="Today is ‘date’, $myvar."

echo $squotes

echo $dquotes

% quotes

Today is ‘date’, $myvar.

Today is Fri Nov 12 12:07:38 EST 2010, csel2345. 24

12

Example

% cat my script

#!/bin/sh

dirs=‘/usr/include/ /usr/local/’ # need single quotes
echo $dirs

1ls -1 $dirs

% my script

/usr/include/ /usr/local/

/usr/include/:

total 2064

-rw-r--r—-- 1 root root 5826 Feb 21 2005 FlexLexer.h
drwxr-xr-x 2 root root 4096 May 19 05:39 GL

/usr/local/:

total 72

drwxr-xr-x 2 root root 4096 Feb 21 2005 bin
drwxr-xr-x 2 root root 4096 Feb 21 2005 etc

25

Reading User Input

Reads from standard input.
Stores what is read in user variable.

Waits for the user to enter something followed by
<RETURN>.

Syntax:
read varname # no dollar sign $

To use the input:
echo $varname

26

13

Example 1

% cat greeting

#!/bin/sh

echo —n “Enter your name:
read name

echo “Hello, $name. How are you today?”

”

% readit
Enter your name: Jane
Hello, Jane. How are you today?

27

Example 2

% cat doit

#!/bin/sh

echo —n ‘Enter a command:
read command

$Scommand

echo “I'm done. Thanks”

’

% doit

Enter a command: l1ls lab*

labl.c lab2.c lab3.c lab4.c 1lab5.c 1lab6.c
I'm done. Thanks

% doit
Enter a command: who
lan pts/200Sep 1 16:23 (indigo.cs.yorku.ca)

jeff pts/201Sep 1 09:31 (navy.cs.yorku.ca)
anton pts/202Sep 1 10:01 (red.cs.yorku.ca)
I'm done. Thanks

28

14

Reading User Input (2)

More than one variable may be specified.

Each word will be stored in separate variable.

If not enough variables for words, the last
variable stores the rest of the line.

29

Example 3

% cat read3

#!/bin/sh

echo “Enter some strings: ”
read stringl string2 string3
echo “stringl is: $stringl”
echo “string2 is: $string2”
echo “string3 is: $string3”

% read3

Enter some strings:

This is a line of words
stringl is: This

string2 is: is

string3 is: a line of words

30

15

Next time ...

Control structures (if, for, while, ...)
Difference between $* and $@

Shell variables

Reading for this lecture: tutorial from “Just
Enough UNIX” 5t edition by Paul K.
Andersen

31

16

