
1

Writing Shell Scripts ─ part 1

CSE 2031

Fall 2010

127 November 2010

What Is a Shell?

• A program that
interprets your request
to run other programs

• Most common Unix
shells:
– Bourne shell (sh)

– C shell (csh)

– Korn shell (ksh)

– Bourne-again shell
(bash)

• In this course we focus
on Bourne shell (sh).

2

2

The Bourne Shell

� A high level programming language

� Processes groups of commands stored in files
called scripts

� Includes

�variables

�control structures

�processes

�signals

3

Executable Files

�Contain one or more shell commands.

�These files can be made executable.

�# indicates a comment

�Except on line 1 when followed by an “!”

% cat welcome
#!/bin/sh
echo ‘Hello World!’

4

3

Executable Files: Example

% cat welcome
#!/bin/sh
echo ‘Hello World!’
% welcome
welcome: execute permission denied
% chmod u+x welcome
% ls -l welcome
-rwxr--r-- 1 lan grad 20 Aug 29 2010 welcome
% welcome
Hello World!
% welcome > greet_them
% cat greet_them
Hello World!

5

Executable Files (cont.)

� If the file is not executable, use “sh” followed by
the file name to run the script.

� Example:
% chmod u-x welcome

% ls -l welcome

rw-r--r-- 1 lan grad 20 Aug 29 2010 welcome

% sh welcome

Hello World!

4

Processes

7

Consider the welcome program.

Processes: Explanation

� Every program is a “child” of some other program.

� Shell fires up a child shell to execute script.

� Child shell fires up a new (grand)child process for each
command.

� Shell (parent) sleeps while child executes.

� Every process (executing a program) has a unique PID.

� Parent does not sleep while running background
processes.

8

5

Variables: Three Types

� Standard UNIX variables

� Consist of shell variables and environment variables.

� Used to tailor the operating environment to suit your needs.

� Examples: TERM, HOME, PATH

� To display your environment variables, type “set”.

� User variables: variables you create yourself.

� Positional parameters

� Also called read-only variables, automatic variables.

� Store the values of command-line arguments.

9

User Variables
� Each variable has two parts:

� a name
� a value

� Syntax:

name=value
� No space around the equal sign!
� All shell variables store strings (no numeric values).
� Variable name: combinations of letters, numbers, and

underscore character (_) that do not start with a
number.

� Avoid existing commands and environment variables.
� Shell stores and remembers these variables and

supplies value on demand.

10

6

User Variables (2)

� These are variables you,
the user, create, read and
change.

� To use a variable:

$varname

� Variable substitution
operator $ tells the shell

to substitute the value of
the variable name.

#!/bin/sh

dir=/usr/include/

echo $dir

echo dir

ls $dir | grep ‘ma’

Output:

/usr/include/

dir

malloc.h math.h
numa.h semaphore.h

11

echo and Variables

� What if I’d want to display the following?

$dir

� Two ways to prevent variable substitution:

echo ‘$dir’

echo \$dir

� Note:

echo “$dir” does the same as

echo $dir

12

7

Command Line Arguments

� Command line arguments stored in variables called
positional parameters.

� These parameters are named $1 through $9.

� Command itself is in parameter $0.

� In diagram format:

command arg1 arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9
$0 $1 $2 $3 $4 $5 $6 $7 $8 $9

� Arguments not present get null (absence of) value
13

Example 1

% cat display_args
#!/bin/sh
echo First four arguments from the
echo command line are: $1 $2 $3 $4

% display_args William Mary Richard James
First four arguments from the
command line are: William Mary Richard James

14

8

Example 2

% cat chex

#!/bin/sh

Make a file executable

chmod u+x $1

echo $1 is now executable:

ls –l $1

% sh chex chex

chex is now executable:

-rwx------ 1 utn faculty 86 Nov 12 11:34 chex

% chex showargs

showargs is now executable:

-rwx------ 1 utn faculty 106 Nov 2 14:26 showargs

15

Command Line Arguments (2)

� A macro is a stand-in for one or more variables
$# represents the number of command line arguments
$* represents all the command line arguments
$@ represents all the command line arguments

% cat check_args
#!/bin/sh
echo “There are $# arguments.”
echo “All the arguments are: $*”
or echo “All the arguments are: $@”

% check_args Mary Tom Amy Tony
There are 4 arguments.
All the arguments are: Mary Tom Amy Tony

16

9

Command Line Arguments (3)

� Note: $# does NOT include the program name
(unlike argc in C programs)

� What if the number of arguments is more than
9? How to access the 10th, 11th, etc.?

� Use shift operator.

17

shift Operator

� shift promotes each argument one position to the left.
� Operates as a conveyor belt.
� Allows access to arguments beyond $9.

shifts contents of $2 into $1
shifts contents of $3 into $2
shifts contents of $4 into $3
etc.

� Eliminates argument(s) positioned immediately after the
command.

� Syntax:
shift # shifting arguments one position to the left
� After a shift, the argument count stored in $# is

automatically decremented by one.
18

10

Example 1

% cat args

#!/bin/sh

echo "arg1 = $1, arg8 = $8, arg9 = $9, ARGC = $#"

myvar=$1 # save the first argument

shift

echo "arg1 = $1, arg8 = $8, arg9 = $9, ARGC = $#"

echo "myvar = $myvar”

% args 1 2 3 4 5 6 7 8 9 10 11 12

arg1 = 1, arg8 = 8, arg9 = 9, ARGC = 11

arg1 = 2, arg8 = 9, arg9 = 10, ARGC = 10

myvar = 1

19

Example 2

% cat show_shift
#!/bin/sh
echo “arg1=$1, arg2=$2, arg3=$3”
shift
echo “arg1=$1, arg2=$2, arg3=$3”
shift
echo “arg1=$1, arg2=$2, arg3=$3”

% show_shift William Richard Elizabeth
arg1=William, arg2=Richard, arg3=Elizabeth
arg1=Richard, arg2=Elizabeth, arg3=
arg1=Elizabeth, arg2= , arg3=

20

11

Example 3

% my_copy dir_name filename1 filename2 filename3 …

This shell script copies all the files to
directory “dir_name”

% cat my_copy
#!/bin/sh
Script allows user to specify, as the 1st argument,
the directory where the files are to be copied.
location=$1
shift
files=$*
cp $files $location

21

Shifting Multiple Times

Shifting arguments three positions: 3 ways to write it

shift
shift
shift

shift; shift; shift

shift 3

22

12

User Variables and Quotes

name=value

� If value contains no space

⇒ no need to use quotes K

#!/bin/sh

dir=/usr/include/

echo $dir

� K unless you want to protect
the literal, in which case use
single quotes.

% cat quotes

#!/bin/sh

Test values with quotes

myvar1=$100

myvar2='$100'

echo The price is $myvar1

echo The price is $myvar2

% quotes 5000

The price is 500000

The price is $100

23

User Variables and Quotes (2)

� If value contains one or more spaces:

� use single quotes for NO interpretation of metacharacters (protect
the literal)

� use double quotes for interpretation of metacharacters

% cat quotes

#!/bin/sh

myvar=`whoami`

squotes='Today is `date`, $myvar.'

dquotes="Today is `date`, $myvar."

echo $squotes

echo $dquotes

% quotes

Today is `date`, $myvar.

Today is Fri Nov 12 12:07:38 EST 2010, cse12345. 24

13

Example
% cat my_script

#!/bin/sh

dirs=‘/usr/include/ /usr/local/’ # need single quotes

echo $dirs

ls -l $dirs

% my_script

/usr/include/ /usr/local/

/usr/include/:

total 2064

-rw-r--r-- 1 root root 5826 Feb 21 2005 FlexLexer.h

drwxr-xr-x 2 root root 4096 May 19 05:39 GL

...

/usr/local/:

total 72

drwxr-xr-x 2 root root 4096 Feb 21 2005 bin

drwxr-xr-x 2 root root 4096 Feb 21 2005 etc

...
25

Reading User Input

� Reads from standard input.

� Stores what is read in user variable.

� Waits for the user to enter something followed by
<RETURN>.

� Syntax:
read varname # no dollar sign $

� To use the input:
echo $varname

26

14

Example 1

% cat greeting
#!/bin/sh
echo –n “Enter your name: ”
read name
echo “Hello, $name. How are you today?”

% readit

Enter your name: Jane

Hello, Jane. How are you today?

27

Example 2

% cat doit
#!/bin/sh
echo –n ‘Enter a command: ’
read command
$command
echo “I’m done. Thanks”

% doit
Enter a command: ls lab*
lab1.c lab2.c lab3.c lab4.c lab5.c lab6.c
I’m done. Thanks

% doit
Enter a command: who
lan pts/200 Sep 1 16:23 (indigo.cs.yorku.ca)
jeff pts/201 Sep 1 09:31 (navy.cs.yorku.ca)
anton pts/202 Sep 1 10:01 (red.cs.yorku.ca)
I’m done. Thanks

28

15

Reading User Input (2)

� More than one variable may be specified.

� Each word will be stored in separate variable.

� If not enough variables for words, the last
variable stores the rest of the line.

29

Example 3

% cat read3
#!/bin/sh
echo “Enter some strings: ”
read string1 string2 string3
echo “string1 is: $string1”
echo “string2 is: $string2”
echo “string3 is: $string3”

% read3
Enter some strings:
This is a line of words
string1 is: This
string2 is: is
string3 is: a line of words

30

16

Next time K

�Control structures (if, for, while, K)

�Difference between $* and $@

�Shell variables

�Reading for this lecture: tutorial from “Just
Enough UNIX” 5th edition by Paul K.
Andersen

31

