Introduction to UNIX

CSE 2031
Fall 2010

Introduction

UNIX is an operating system (OS).

Our goals:
Learn how to use UNIX OS.

Use UNIX tools for developing
programs/software, specifically shell
programming.

Processes

Each running program on a UNIX system is
called a process.

Processes are identified by a number (process
id or PID).

Each process has a unique PID.

There are usually several processes running
concurrently in a UNIX system.

ps command

% ps a # list all processes
PID TTY TIME CMD
2117 pts/24 00:00:00 pine
2597 pts/79 00:00:00 ssh
5134 pts/67 00:00:34 alpine
7921 pts/62 00:00:01 emacs
13963 pts/24 00:00:00 sleep
13977 pts/93 00:00:00 ps
15190 pts/90 00:00:00 vim
18819 pts/24 00:00:07 stayAlive
24160 pts/44 00:00:01 xterm

The File System

Directory structure
Current working directory
Path names

Special notations

Directory Structure

! (root)

T

etc bin usr dev

AR |

bin conf cc Is awk home console kbd TAPE

perl | php httpd.conf jack jill
httpd 7.{}1., bin tmp

a.out a.out

Current Working Directory

Every process has a current working directory.

In a shell, the command Is shows the contents
of the current working directory.

pwd shows the current working directory.

cd changes the current working directory to
another.

Path Names

A path name is a reference to something in the file
system.

A path name specifies the set of directories you have to
pass through to find a file.

Directory names are separated by /' in UNIX.
Path names beginning with '/' are absolute path names.

Path names that do not begin with '/* are relative path
names (start search in current working directory).

Special Characters

. means the current directory

.. means the parent directory
cd ..
cd ../Notes
~ means the home directory
cat ~/lab3.c
To go directly to your home directory, type
cd

Frequently Used Terminal Keystrokes

Interrupt the current process: Ctrl-C
End of file: Ctrl-D
Read input (stdin) from a file
a.out < input_file
Redirect output (stdout) to a file
Is > all_files.txt # overwrites all_files.txt

Append stdout to a file
Is >> all_files.txt # append new text to file

Wildcards (File Name Substitution)

Goal: referring to several files in one go.

? match single character
Is ~/C2031/lab5.22?
lab5.doc lab5.pdf lab5.out

* match any number of characters
Is ~/C2031/lab5.*

[...] match any character in the list enclosed by []
Is ~/C2031/lab[567].c
lab5.c lab6.c lab7.c

We can combine different wildcards.
Is [e]*.c
enum.c exl.c ex2.c

File Manipulation Commands

Is, cp, mv, rm

touch

pwd, mkdir, rmdir

cd

chmod, chown, chgrp
find

find command

Search from the current Search from the home directory:
directory:

% find ~ -name "exl.c"
% find . -name "exl.c" /cs/home/utn/Temp 2031/Misc/exl.c
-/Ptr2Ptr/exl.c /cs/home/utn/Demo_2031/Ptr2Ptr/exl.c
-/exl.c /cs/home/utn/Demo_2031/exl.c
% find . -name "e*.c" gegrch from the specified directory:
./Midterm/err.c
./ex2.c % find ./Testl/Archive/ -name "*.c"
./Ptr2Ptr/ex2.c ./Testl/Archive/convertMain.c
./Ptr2Ptr/exl.c
./enum.c
./exl.c

Commonly Used Commands

Get on-line help with
man

man chgrp
Some commonly

used commands date
cat, more sort
who wC

grep ps, kill

echo history

cat, more, tail

% cat phone_book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% more phone_ book
Similar to cat, except that the file

is displayed one screen at a time.

% tail myfile.txt
Display the last 10 lines

% tail -5 myfile.txt
Display the last 5 lines

% tail -1 myfile.txt
Display the last line

% tail +3 myfile. txt

Display the file starting from the
3 line.

echo

When one or more strings are provided as arguments,
echo by default repeats those strings on the screen.

% echo This is a test.

This is a test.

It is not necessary to surround the strings with quotes, as
it does not affect what is written on the screen.

If quotes (either single or double) are used, they are not

repeated on the screen.

% echo ‘'This is’”a test.”

This is a test.

To display single/double quotes, use \’ or \”

echo (cont.)

% echo a \t b
athb

% echo 'a \t b'
a b

% echo "a \t b"
a b

UNIX Filter grep

‘char’ *.c
char s[] = "2031";
char c;

% grep
arr.c:
char.c:
char.c: c = getchar() ;

% grep ‘1302ESC’ cse*/lab3.c

% grep —-i ‘ChaR’ *.c

arr.c: char s[] = "2031";
char.c: char c;
char.c: c = getchar() ;

% grep —-v ‘char’ *.c

Search for lines that do not
contain string char.

% grep *_ txt

Search for lines that contain either
bean or beam.

‘bea[nm]’

% grep '[0-9][0-9][0-9]' *.c

Search for lines that contain a
sequence of 3 (or more) digits.

grep (cont.)

% grep —n ‘char’ *.c
Also display the line numbers.

% grep ‘[3]’ *.c
% grep ‘3’ *.c

Search for lines that contain digit 3.

% grep ‘\[3\]’' *.c

Search for lines that contain string [3].

% grep ‘\[’' *.c

WC

% wWC enum.cC
14 37 220 enum.c

$ we [e]l*.c

14 37 220 enum.c
17 28 233 exl.c
21 46 300 ex2.c
52 111 753 total

% wWc -c enum.cC

220 enum.c

% WC -w enum.cC

37 enum.c

% we -1 enum.c

14 enum.c

20

10

sort

% cat phone_book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% sort phone_book
Amy 416-123-4567
Annie 905-555-9876
John 647-999-4321
William 905-888-1234
Yvonne 416-987-6543

Try these options:
sort -r

reverse normal order
sort -n

numeric order
sort -nr

reverse numeric order
sort -f

case insensitive

21

cmp, diff

% cat phone_book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% cat phone_book2
Yvonne 416-987-6543
Amy 416-111-1111
William 905-888-1234
John 647-999-9999
Annie 905-555-9876

% cmp phone book phone book2

phone_book phone_book2
differ: char 30, line 2

% diff phone_book
phone_book2

2c2
< Amy 416-123-4567
> Amy 416-111-1111
4c4
< John 647-999-4321

> John 647-999-9999

22

11

who

% who

ossama pts/13
hoda pts/21
gordon pts/24
minas pts/29
jas pts/37
utn pts/93

User name

Nov

Nov 5 10:40 (bas2-toronto08-1096793138.dsl.bell.ca)

7 00:22 (ip-198-96-36-11.dynamic.yorku.ca)
Nov 4 16:49 (gomez.cs.yorku.ca)

Nov 2 14:09 (monster.cs.yorku.ca)
Oct 18 12:36 (brayden.cs.yorku.ca)

Nov

7 12:21 (bas2-toronto44-1177753778.dsl.bell.ca)

Terminal associated with the process
Time when they logged in

23

Kill

% ps a

PID
2117
2597
5134
7921

13963
13976
13977
15190
24160

TTY

pts/24
pts/79
pts/67
pts/62
pts/24
pts/43
pts/93
pts/90
pts/44

00:
00:
00:
00:
00:
00:
00:
00:
00:

TIME

00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
34
01
00
00
00
00
01

CMD
pine
ssh
alpine
emacs
sleep
sleep
Ps
vim
xterm

% kill -9 7921

9 is the KILL signal

24

12

history

% history 10

323
324
325
326
327
328
329
330
331
332

12
12
12
12
12
12
12
12
12
12

: 45
147
148
148
:49
:50
:52
:56
: 57
: 57

1s

cd Demo_2031/
1s

m exl.c

who

history 10

1s -a

1ls Stack/

1s

history 10

25

Pipes

Pipe: a way to connect the output of one program to the
input of another program without any temporary file.

Pipeline: connection of two or more programs through

pipes.

Examples:

1s -1 |

wec -1

who | sort

who | we -1

who | grep

ps a |

grep

count number of files

sort user list

count number of users
‘utn’ # look for user ‘utn’
'emacs’ # look for process emacs

26

13

NEVER-DO List in UNIX

Never switch off the power on a UNIX computer.

You could interrupt the system while it is writing to the disk drive
and destroy your disk.

Other users might be using the system.
Avoid using * with rmsuchas rm *, rm *.c

Do not name an important program core.

When a program crashes, UNIX dumps the entire kernel image to a
file called core.

Many scripts go around deleting these core files.

Do not name an executable file test.
There is a Unix command called test.

27

Next time ...
Writing Shell Scripts

Reading: Chapters 1 and 2
“Practical Programming in the UNIX Environment”

28

14

