

CodeGuru Forums (http://www.codeguru.com/forum/index.php)
- CodeGuru Individual FAQs (http://www.codeguru.com/forum/forumdisplay.php?f=81)
- - C++ General: How is floating point representated?
(http://www.codeguru.com/forum/showthread.php?t=323835)

C++ General: How is floating point representated?

Q: What is IEEE 754 standard?

A: IEEE Standard 754 floating point is the most common representation today for real numbers
on computers, including Intel-based PC's, Macintoshes, and most Unix platforms.

Q: Is this the format use by Microsoft VC++ also?

A: Microsoft Visual C++ is consistent with the IEEE numeric standards. There are three internal
varieties of real numbers. Real*4 and real*8 are used in Visual C++. Real*4 is declared using the
word float. Real*8 is declared using the word double. In Windows 32-bit programming, the long
double data type maps to double. There is, however, assembly language support for
computations using the real*10 data type.

Q: What is the format specified by the standard?

A: IEEE floating point numbers have three basic components: the sign, the exponent, and the
mantissa. The sign bit is 0 for positive, 1 for negative. The exponent's base is two. The exponent
field contains 127 plus the true exponent for single-precision, or 1023 plus the true exponent for
double precision. The first bit of the mantissa is typically assumed to be 1.f, where f is the field of
fraction bits.
To learn more about the standard see:

 IEEE Standard 754 Floating Point Numbers
 IEEE Standards Site

Q: What is the range of real numbers in VC++?

A:

float (4 bytes) : 1.175494351E-38 to 3.402823466E+38, significant decimal digits: 6
double (8 bytes) : 2.2250738585072014E-308 to 1.7976931348623158E+308, significant
decimal digits: 15
real*10 (10 bytes) : 3.37E-4932 to 1.18E+4932, significant decimal digits: 19

cilu January 5th, 2005 03:56 AM

Uyen Trang
Highlight

Q: I have a problem with the following code.

Code:

int main()
{
 float a = 2.501f;
 a *= 1.5134f;
 if (a == 3.7850134) cout << "Expected value" << endl;
 else cout << "Unexpected value" << endl;
}

Why does the program outputs "Unexpected value", because 2.501 * 1.5134 = 3.7850134?

A: Floating-point decimal values generally do not have an exact binary representation. This is a
side effect of how the CPU represents floating point data. Different compilers and CPU
architectures store temporary results at different precisions, so results will differ depending on
the details of your environment. If you do a calculation and then compare the results against
some expected value it is highly unlikely that you will get exactly the result you intended.

To summarize, never make such a comparison:

Code:

if (a == b) ...

Instead make sure that the result is greater or less than what is needed, with a given error.
Code:

if(fabs(a - b) < error) ...

The above example should be rewritten like this:
Code:

#define EPSILON 0.0001 // Define your own tolerance
#define FLOAT_EQ(x,v) (((v - EPSILON) < x) && (x <(v + EPSILON)))
int main()
{
 float a = 2.501f;
 a *= 1.5134f;
 if (FLOAT_EQ(a, 3.7850)) cout << "Expected value" << endl;
 else cout << "Unexpected value" << endl;
}

However, since float has 6 significant decimals you might want to have an EPSILON value not
grater than 0.000001. It depends on the tolerance you need. But you cannot use an EPSILON of
0.0000001 because it that case it exceeds the float precision.

In order to avoid any misleading you should understand that there can be only 6 decimal digits in
the result. But this does not imply 0.000001! When dealing with all small values you could just as
well have an epsilon of 0.0000000000000001 providing the values compared to are equaly small
enough. In the case of a float value of 12345.6789, the float is only reliably correct to the first 6

Uyen Trang
Highlight

decimal digits, so, it's at best guaranteed accurate only to 0.1. Using the epsilon macro to an
accuracy of 0.0001 may not actually help in establishing equality.

It is a common misconception that epsilon when dealing with floats is (or can be) an absolute
value. It is not! Epsilon (as in the FLT_EPSILON or DBL_EPSILON definitions) is the minimal
representable value, but in order to apply it to a result, you have to scale epsilon to the same
exponent as the values you are comparing.

Code:

// float.h
#define DBL_EPSILON 2.2204460492503131e-016 /* smallest such that 1.0
+DBL_EPSILON != 1.0 */
#define FLT_EPSILON 1.192092896e-07F /* smallest such that 1.0
+FLT_EPSILON != 1.0 */

Using the real FLT_EPSILON or DBL_EPSILON definition (scaled to match operands) in order to
compare for equality is possible, but requires a considerable amount of code. The FLOAT_EQ()
macro is a good easy alternative, but you do need to be aware that it can only perform it's job
properly when the values tested are within the accuracy range of the type used (float/double).

Code:

float a = 51234.1f;
a*= 79.6787f;

if (FLOAT_EQ(a,4082266.48367)) ...

Each of the floats used (551234.1f and 79.6787f) are suffienctly accurate (either float is only 6
decimal digits). The resulting float however has 12 decimal digits. Even though you have
attempted to adjust for the inequality with the FLOAT_EQ() macro, it still returns false. In fact,
the above returns false up to the point where we set EPSILON to 1.0!

Q: Why this inaccuracy of floating type representations and not of integer types also?

A: An integer type number is a string of bits that represent the powers of two, and these powers
sum to give the decimal number. For instance 1011 is in decimal 8 + 2 + 1, which is 11.

On the other hand a floating type number is a string of bits that represent the inverted powers of
two. For instance 0.1011 is decimal 1/2 + 1/8 + 1/16, which is 0.6875. While you can accurately
represent some decimal values (like 0.5, 0.25, 0.75, 0.625,...) you can't accurately represent all
decimals values (like 0.1).

Q: The following program outputs "Expected value" both in Release and Debug builds. Why?

Code:

int main()
{
 float a = 2;
 a *= 1.5;

 if (a == 3) cout << "Expected value" << endl;
 else cout << "Unexpected value" << endl;
}

A: That is because 1.5 has and exact representation in binary: 2^0 + 2^-1, which is 1.1 binary
and when you multiply it by 2, increasing the exponent by 1, it yelds an exact value of 3.0
without any rounding.

Q: But the next program outputs "Expected value" in the Debug build and "Unexpected value" in
the Release and I don't know why.

Code:

int main()
{
 float a = 0.1;
 a*=10;
 if (a == 1.0) cout << "Expected value" << endl;
 else cout << "Unexpected value" << endl;

 return 0;
}

A: In Debug build, the value will get actually stored into the stack variable a before comparison.
This conversion from the FPU stack to float corrects the floating point error because of rounding.
In a Release build, the variable gets optimised away, and the value on the FPU stack is compared
to 1.0 (no conversion to float happens).

Q: Where from can I learn more about floating point comparison?

A: See the Comparing floating point numbers article by Bruce Dawson.

Credits: This FAQ was written with the help of OReubens

Re: C++ General: About floating point representation

Q: When should I use float and when double?

A: There is a short answer and a long answer.

The short answer is that if precision is less of a concern than storage, consider using type float for
floating-point variables. Conversely, if precision is the most important criterion, use type double.

The long answer is a little bit detailed. Floating point types are very good for
mathematical/statistical type applications where you need a high amount of precision but you do
not need decimal accuracy. For float you will have a result that is only reliably correct to 6

cilu January 16th, 2005 08:14 AM

Uyen Trang
Highlight

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2010, Jelsoft Enterprises Ltd.

decimal positions. Double will have a result correct to 15 decimal positions.

For bussiness software, floats/doubles are often a bad choice because of their inherent inaccuracy
when dealing with decimal digits. In fact, some countries prohibit by law the use of accounting
software that uses floating point variables. Many specifications for bussiness software also
prohibit the use of floating point. The solution in these cases is then to either use regular int
factored by a power of 10 (ex: 1.23 would be stored as 123 with an implicit/explicit factor 100).
Or use a decimal BCD (Binary Coded Decimal) type storage (the way Cobol stores its values).
C/C++ have support for integers (the implicit/explicit) factoring you will have to provide yourself.
There is no built in support for BCD.

With C++ however it is fairly simple to create a class that will handle (large) decimal numbers
without using floating point. Even if the specifications for bussiness software do not specify
explicitely that you can/can't use floating point, you might consider not using them. It could save
you a headaches and tracking down of weird problems dealing with floating point rounding errors.

Q: So, I should not use float/double for bussiness software?

A: For bussiness software, floats will never do, simply because you can only represent very
simple values accurately (6 decimal digits is not a lot). You will always want to use double
because of the higher decimal accuracy of 15 decimal digits. And even with the added precision
and range of doubles, they are still quite often a major source of problems when dealing with the
need for decimal accuracy.

FPU math is always only an approximation, and that all results are off by a small amount. For
mathematical/statistical type problems, 3D calculations and the like, the inaccuracy is often not a
real (no pun intended) problem, and if it is, you just use a higher precision type to get more
accurate (but still off) results. There are compilers/libraries that offer even more accuracy than
real*10 does.

But bussiness software is a different ballgame. Even an inaccuracy of only 1 cent is a huge
problem in accounting or banks. And even a real*1000 could still cause a 1 cent rounding
problem (as strange as this may seem).

BCD or factored int's do not have these particular problems, they have a few problems of their
own, but they are much more easily defined because they reflect the way we learned how to do
decimal math in school. It's this that makes them better suited for bussiness software.

Using floating point seems so deceptively easy that you often won't reconsider anything else. And
by the time you're in the spot where you have to deal with floating point rounding/conversion
problems, you're usually too far ahead to scrap them all in favour of BCD/factored int's.

All times are GMT -5. The time now is 11:19 AM.

Uyen Trang
Highlight

