
1

Structures

CSE 2031

Fall 2010

122 October 2010

Basics of Structures (6.1)

struct point {

int x;
 Now struct point is a

valid type.

int y;

};

keyword struct introduces a
structure declaration.

point: structure tag

b

 Defining struct variables:
struct point pt;

struct point

maxpt = {320, 200};

 A struct declaration defines
a type.

x, y: members

The same member names may
occur in different structures.

yp
struct { ... } x, y, z;

or struct point x,y,z;

is syntactically analogous to
int x, y, z;

2

2

Using Structures

 Members are accessed using operator “.”
structure-name memberstructure-name.member

printf(“%d,%d", pt.x, pt.y);

double dist, sqrt(double);

dist = sqrt((double)pt.x * pt.x +

(double)pt.y * pt.y);

 Structures cannot be assigned Structures cannot be assigned.
struct point pt1, pt2;

pt1.x = 0; pt1.y = 0;

pt2 = pt1; /* WRONG !!! */

3

Structure Name Space

 Structure and members names have their own
name space separate from variables andname space separate from variables and
functions.
struct point point; /* both are valid */

struct point {

int x;

int y;int y;

} x;

4

3

Nested Structures

struct rect {

struct point pt1;struct point pt1;

struct point pt2;

};

struct rect screen;

screen.pt1.x = 1;

screen.pt1.y = 2;p y ;

screen.pt2.x = 8;

screen.pt2.y = 7;

5

Structures and Functions (6.2)

 Returning a structure from a function.
/* makepoint: make a point from x and y components */

struct point makepoint(int x, int y) {

struct point temp;

temp.x = x;

temp.y = y;

return temp;

}

struct rect screen;

struct point middle;struct point middle;

struct point makepoint(int, int);

screen.pt1 = makepoint(0,0);

screen.pt2 = makepoint(XMAX, YMAX);

middle = makepoint((screen.pt1.x + screen.pt2.x)/2,

(screen.pt1.y + screen.pt2.y)/2);

6

4

Structures and Functions (cont.)

 Passing structure arguments to functions: structure parameters are
passed by values like int, char, float, etc. (a copy of the structure is
sent to the function).

/* addpoints: add two points */

struct addpoint(struct point p1, struct point p2)

{

p1.x += p2.x;

p1.y += p2.y;

return p1;

}

 Note: the components in p1 are incremented rather than using an
explicit temporary variable to emphasize that structure parameters
are passed by value like any others.

7

Pointers to Structures

 If a large structure is to be passed to a function, it is
generally more efficient to pass a pointer than to copygenerally more efficient to pass a pointer than to copy
the whole structure.

struct point *pp;

struct point origin;

pp = &origin;

printf("origin is (%d,%d)\n", (*pp).x, (*pp).y);p (g (,)\ , (pp) , (pp) y);

 Note: *pp.x means *(pp.x), which is illegal (why?)

8

5

Pointers to Structures: Example

/* addpoints: add two points */

struct point addpoint (struct point *p1, struct point *p2)

{

struct point temp;

temp.x = (*p1).x + (*p2).x;

temp.y = (*p1).y + (*p2).y;

return temp;

}

main() {

struct point a, b, c;

/* Input or initialize structures a and b */

c = addpoint(&a, &b);

}
9

Pointers to Structures: Shorthand

 (*pp).x can be written as pp->x

printf("origin is (%d,%d)\n", pp->x, pp->y);

struct rect r, *rp = &r;

r.pt1.x = 1;

rp->pt1.x = 2;

(r.pt1).x = 3;(p) ;

(rp->pt1).x = 4;

 Note: Both . and -> associate from left to right.

10

6

Pointers to Structures: More Examples

 The operators . and -> along
with () and [] have the highest
precedence and thus bind very
tightly.

struct {

int len;

char *str;

} *p;

*p->str

*p->str++

(*p->str)++

* ++ > t} p;

++p->len  ++(p->len)
(++p)->len

(p++)->len  p++->len

*p++->str

11

Arrays of Structures (6.3)

struct dimension {
float width;float width;
float height;

};
struct dimension chairs[2];
struct dimension *tables;
tables = (struct dimension*) malloc
(20 * sizeoff(struct dimension));

12

7

Initializing Structures

struct dimension sofa = {2.0, 3.0};

struct dimension chairs[] = {

{1.4, 2.0},

{0.3, 1.0},

{2.3, 2.0} };

13

Arrays of Structures: Example

struct key {

char *word;

struct key {

char *word;

iint count;

};

struct key keytab[NKEYS];

struct key *p;

for (p = keytab;

p < keytab + NKEYS; p++)

int count;

} keytab[] = {
"auto", 0,

"break", 0,

"case", 0,

"char", 0,

"const", 0,

"continue", 0,

"default", 0,

printf("%4d %s\n",

p->count, p->word);

/* ... */

"unsigned", 0,

"void", 0,

"volatile", 0,

"while", 0

};

14

8

Pointers to Structures (6.4)

struct key keytab[NKEYS];

struct key *p;

for (p = keytab; p < keytab + NKEYS; p++)

printf("%4d %s\n", p->count, p->word);

 p++ increments p by the correct amount (i.e., structure size) to get the next
element of the array of structures.

struct {

char c; /* one byte */

int i; /* four bytes */

};

 What is the total structure size?
 Use the sizeof operator to get the correct structure size.

15

Self-referential Structures (6.5)

Example: (singly) linked list

struct list {

int data;

struct list *next;

};

16

3

9

Linked List

 Pointer head points to the first element

 Last element pointer is NULL Last element pointer is NULL

 Example (next slide): build a linked list with data being
non-negative integers, then search for a number.
 Insertion at the end (rear) of the list.

 We also learn how to dynamically allocate a structure.

head

3 10 6 NULL

17

Linked List Implementation

#include <stdio.h>
#include <stdlib.h>
main() {

while(i >= 0) {
p = (struct list *)

malloc(sizeof(struct list));a () {
struct list {

int data;
struct list *next;

} *head, *p, *last;
int i;

/* Create a dummy node, which
simplifies insertion and deletion */

p─>data = i;
p─>next = NULL;
last─>next = p;
last = p;
scanf(“%d”, &i);

} /* while */

printf(“Enter the number to search for “);
f(“%d” &i)head = (struct list *) malloc

(sizeof(struct list));
head─>data = -1;
head─>next = NULL;
last = head;
scanf(“%d”, &i); /* input 1st element */

scanf(“%d”, &i);
for(p = head; p != NULL; p = p─>next)

if(p─>data == i)
printf("FOUND %d \n“, i);

} /* main */

18

10

typedef (6.7)

 For creating new data type names

typedef int Length;

Length len, maxlen;

Length *lengths[];

typedef char *String;yp g;

String p, lineptr[MAXLINES];

p = (String) malloc(100);

int strcmp(String, String);

19

typedef with struct

We can define a new type and use it later

typedef struct {
int x,y;
float z;

} mynewtype;
mynewtype a, b, c, x;

 Now, mynewtype is a type in C just like int or
float.

20

11

Self-referential Structures: More Examples

 Binary trees (6.5)

 H h t bl (6 6) Hash tables (6.6)

To be covered later if time permits.

21

Next time ...

Midterm (Oct. 25)

Big lab test 1 (Nov. 1)

Pointers part 2

22

