
1

Types, Operators andTypes, Operators and
Expressions

CSE 2031

Fall 2010

19/19/2010 1:05 PM

Variable Names (2.1)

 Combinations of letters, numbers, and underscore
character (_) that (_)
 do not start with a number;
 are not a keyword.

 Upper and lower case letters are distinct (x ≠ X).

 Examples: Identify valid and invalid variable namesp y
abc, aBc, abc5, aA3_ , char, _360degrees,
5sda, my_index, _temp, string, struct,
pointer

2

2

Variable Names: Recommendations

 Don’t begin variable names with underscore _
 Limit the length of a variable name to 31 characters or Limit the length of a variable name to 31 characters or

less.
 Function names, external variables: may be less than 31

characters allowed, depending on systems.
 Lower case for variable names.
 Upper case for symbolic constants

 #define MAX_SIZE 100_

 Use short names for local variables and long names for
external variables.

3

Data Types and Sizes (2.2)

4 basic types in C

 h h t (8 bit) char – characters (8 bits)

 int ─ integers (either 16 or 32 bits)

 float – single precision floating point numbers
(4 bytes)

 double – double precision floating point
numbers (8 bytes)

4

3

Qualifiers

 signed char sc; /* -127 – +128 */

 unsigned char uc; /* 0 – +255 */ unsigned char uc; / 0 +255 /

 short s; /* 16 bits, -32,768 - +32,767 */
 short int s;

 long counter; /* 32 bits */
 long int counter;

 int is either 16 or 32 bits, depending on systems.

 i d i t i t /* i t i t */ signed int sint; /* same as int sint; */

 unsigned int uint;
 0 – +4,294,967,295, assuming 4-byte int

 long double ld; /* 12 bytes */

5

Qualifiers (cont.)

 <limits.h> and <float.h> contain
symbolic constants for all of the above sizessymbolic constants for all of the above sizes,

other properties of the machine and compiler.

 To get the size of a type, use sizeof()

int_size = sizeof(int);

6

4

Characters

 8 bits

 Included between 2 single quotes Included between 2 single quotes
char x =‘A’

 Character string: enclosed between 2 double quotes
“This is a string”

 Note: ‘A’ ≠ “A”

 c =‘\012’ /* 10 decimal; new line character */

A A \0

7

Characters

8

5

Constants (2.3)

Numeric constants

Character constants

String constants

Constant expressions

Enumeration constants

9

Integer Constants

 Decimal numbers
123487

Octal: starts with 0 (zero)
0654

 Hexadecimal: starts with 0x or 0X
ox4Ab2, OX1234

 long int: suffixed by L or l long int: suffixed by L or l
7L, 106l

 unsigned int: suffixed by U or u
8U, 127u

10

6

Floating-point Constants

15.75

1 575E1 /* = 15 75 */

100L /* long double */

100F /* float */1.575E1 / = 15.75 /

1575e-2 /* = 15.75 */

-2.5e-3 /* = -0.0025 */

25E-4 /* = 0.0025 */

 If there is no suffix, the type is
id d d bl (8 b t)

100F / float /

 You can omit the integer
portion of the floating-point
constant.

0075e2considered double (8 bytes).

 To specify float (4 bytes), use
suffix F or f.

 To specify long double (12
bytes), use suffix L or l.

.0075e2

0.075e1

.075e1

75e-2

11

Numeric Constants

 2010

 100000
 int

 will be taken as long 100000

 729L or 729l

 2010U or 2010u

 20628UL or 20628ul

 24.7 or 1e-2

 24.7F or 24.7f

 will be taken as long

 long (int)

 unsigned

 unsigned long

 double

 float
 24.7L or 24.7l

 037

 0x1f, 0X1f, 0x1F

 OXFUL

float

 long double

 octal (= 31 decimal)

 hexadecimal (= 31)

 What is this?
12

7

Character Constants

‘x’

‘2’ numeric value 502

‘\0’

#define NEW_LINE ‘\012’

#define SPACE ‘\x20’

 numeric value 50

 NULL char, value 0

 octal, 10 in decimal

 hex, 32 in decimal

13

Escape Sequences

14

8

String Constants

“hello, world\n”

“” /* empty string */

\” /* double quote character */

“hello,” “ world” same as “hello, world”, ,

 concatenated at compile time

 useful for splitting up long strings across several source
lines.

15

Constant Expressions

 Expressions that involve only constants.

 E l t d d i il ti Evaluated during compilation.

#define MAXLINE 1000

char line[MAXLINE+1];

#define LEAP 1 /* in leap years */#define LEAP 1 / in leap years /

int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31];

16

9

Enumeration Constants

enum boolean { NO, YES };

 The first name in an enum has value 0 the next 1 and The first name in an enum has value 0, the next 1, and
so on, unless explicit values are specified.

enum colours { black, white, red, blue, green };

enum escapes { BELL = '\a', BACKSPACE = '\b', TAB =
'\t', NEWLINE = '\n', VTAB = '\v', RETURN = '\r'
};

 If not all values are specified, unspecified values p p
continue the progression from the last specified value.

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC };

/* FEB = 2, MAR = 3, etc. */

17

Limits

 File limits.h provides several constants

 h char CHAR_BIT, CHAR_MIN, CHAR_MAX,
SCHAR_MIN, …

 int INT_MIN, INT_MAX, UINT_MAX

 long LONG_MIN, …

 You can find FLOAT_MIN, DOUBLE_MIN, … in
<float.h>

18

10

Declarations (2.4)

 All variables must be declared before use (certain
declarations can be made implicitly by content).declarations can be made implicitly by content).

 A variable may also be initialized in its declaration.

char esc = '\\';

int i = 0;

int limit = MAXLINE+1;

float eps = 1.0e-5;

19

Qualifier const

 Indicates that the value of a variable will not be changed.

 For an array: the elements will not be altered For an array: the elements will not be altered.
const double e = 2.71828182845905;

const char msg[] = "warning: ";

 Used with array arguments, to indicate that the function
does not change that array.
int strlen(const char[]);

 Note: The result is implementation-defined if an attempt
is made to change a const.

20

11

Arithmetic Operators (2.5)

+ ─ * / %

Examples:
abc = x + y * z;
j = a % i;
++x;
x++;
x + 5; /* x x + 5; */x += 5; /* x = x + 5; */
y /= z; /* y = y / z */
What is x *= y + 1 ?

21

Precedence and Associativity

22

12

Type Conversion (2.7)

 float f; int i; What is the type of f+i ?

 General rule: convert a “narrower” operand into a “wider” General rule: convert a narrower operand into a wider
one without losing information.

 So i is converted to float before the addition.

 char may be freely used in arithmetic expressions.

/* lower: convert c to lower case; ASCII only */

int lower(int c)

{

if (c >= 'A' && c <= 'Z')

return c – 'A' + 'a';

else return c;

}
23

Arithmetic Conversion

 When a binary operator has operands of different types,
the “lower” type is promoted to the “higher” type beforethe lower type is promoted to the higher type before
the operation proceeds.

 If either operand is long double, convert the other to long
double.

 Otherwise, if either operand is double, convert the other
to double.

 Otherwise if either operand is float convert the other to Otherwise, if either operand is float, convert the other to
float.

 Otherwise, convert char and short to int.

 Then, if either operand is long, convert the other to long.

24

13

Arithmetic Conversion: Examples

int int a=5 b=2 c;int

int
int

double

double
double

int a=5, b=2, c;
double x, y = 2;

x = a/b;
// x = 2.0

c = a/b;
// c = 2

int

double
double

// c
x = a/y;

// x = 2.5
c = a/y;

// c = 2
25

More Examples

 17 / 5
33

 17.0 / 5
3.4

 9 / 2 / 3.0 / 4
9 / 2 = 4
4 / 3.0 = 1.333
1.333 / 4 = 0.333

26

14

Type Conversion: More Rules

 Conversions take place
across assignments; the

 float to int causes
truncation of anyacross assignments; the

value of the right side is
converted to the type of
the left, which is the type
of the result.

 Example:

truncation of any
fractional part.

 Example:
float x, y = 2.7;

int i = 5;

x = i; /* x = 5 0 */ Example:
int a;

float x = 7, y = 2;

a = x / y;

x = i; /* x = 5.0 */

i = y; /* i = 2 */

27

Type Conversion: Even More Rules

 Longer integers are converted
to shorter ones or to chars by
dropping the excess high-order
bits.

int i;

char c;

i = c;

c i

int i;

char c;

c = i;

i = c;c = i;

/* c unchanged */

i = c;

/* i may be changed */

28

15

Casting

int A = 9, B = 2;

double x;double x;

x = A / B; /* x is 4.0 */

x = A / (double)B; /* C is 4.5 */

int n;

sqrt(double(n))

Doesn’t change the value of B,
just changes the type to double

sqrt(double(n))

 The cast operator has the same high precedence as
other unary operators.

29

Increment and Decrement Operators (2.8)

 ++ or --

 Placing in front: incrementing or decrementing occurs BEFOREg g g
value assigned

 Placing after: occurs AFTER value assigned

k = ++i; k =--i;i = i + 1;
k = i;

3
3

i = i - 1;
k = i;

1
1

i = 2 and k = 1

k = i++;

i = 2 and k = 1

k = i--;k = i;
i = i + 1;

2
3

k = i;
i = i - 1;

2
1

30

16

Precedence and Associativity

31

Examples

int a=2, b=3; c=5, d=7, e=11, f=3;

f += a/b/c;

d -= 7+c*--d/e;

d = 2*a%b+c+1;

a += b +=c += 1+2;

3

-3

7

13

32

17

Relational and Logic Operators (2.6)

 Relational operators: for (i=0;

i < lim-1 &&

> >= < <=

== !=

 Logical operators:

! && ||

 Evaluation stops as

(c=getchar()) != '\n' &&
c != EOF;

++i)

s[i] = c;

if (valid == 0)

/* same as */

if (! lid)
p

soon as the truth or
falsehood of the result
is known.

if (!valid)

33

Boolean Expressions

 False is 0; any thing else is 1 (true).

W itWrite
if (!valid)

instead of
if (valid == 0)

34

18

Bitwise Operators (2.9)

 Work on individual bits

& | ^ ~
a =1;

b = 2;& | ^ ~
 Examples:

short int i=5, j=8;

k=i&j;

k=i|j;

k=~j;

b = 2;

c = a & b; /*c = 0*/

d = a && b; /*d = 1*/

 Application: bit masking
j;

n = n & 0177;

x = x | SET_ON;

35

Bit Shifting

 x<<y means shift x to the left y times.

 equivalent to multiplication by 2y equivalent to multiplication by 2y

 x>>y means shift x to the right y bits.

 equivalent to division by 2y

 Left shifting 3 many times:

0 3

1 6

2 12

3 24

4 48

5 ...

13 49512

14 32768
36

19

Right Shifting

 It could be logical (0) or arithmetic (signed)

 If i d 0 if i d d fi d i C If unsigned, 0; if signed undefined in C

unsigned int i = 714;

357 178 89 44 22 11 5 2 1 0

What if i = -714 ?

-357 -178 -89 . . . -3 -2 -1 -1 -1 -1

37

Bitwise Operators: Examples

x = x & ~077;

sets the last six bits of x to zerosets the last six bits of x to zero.

/* getbits: get n bits from position p */

unsigned getbits(unsigned x, int p, int n)

{

return (x >> (p+1-n)) & ~(~0 << n);((p)) ();

}

38

20

Assignment Operators / Expressions (2.10)

 A *= B; // equivalent to
 A = (A) * (B); // note the parentheses A = (A) (B); // note the parentheses

 Can be used with: + ─ * / % << >> & ^ |

yyval[yypv[p3+p4] + yypv[p1]] += 2

/* bitcount: count 1 bits in x */

int bitcount(unsigned x) {t b tcou t(u s g ed) {

int b;

for (b = 0; x != 0; x >>= 1)

if (x & 01)

b++;

return b;

}
39

Conditional Expressions (2.11)

exp1 ? exp2 : exp3

 If 1 i t th l f th diti l If exp1 is true, the value of the conditional
expression is exp2; otherwise, exp3.
z = (a > b)? a : b; /* z = max (a, b)*/

 If expr2 and expr3 are of different types, the type of
the result is determined by the conversion rulesthe result is determined by the conversion rules
discussed earlier.
int n; float f;

(n > 0) ? f : n

/* result of type float in either case */
40

21

Conditional Expressions: Advantage

 Succinct code

 Example 1:
for (i = 0; i < n; i++)

printf("%6d%c", a[i],

(i%10==9 || i==n-1) ? '\n' : ' ');

 Example 2:
printf("You have %d item%s.\n", n,

n==1 ? "" : "s");

41

Precedence and Order of Evaluation (2.12)

42

22

Next time ...

 Control Flow (Chapter 3, C book)

 Basic UNIX (Chapter 1, UNIX book)

43

