
1

Introduction to C

CSE 2031

Fall 2010

19/12/2010 2:21 PM

History

Widely used, powerful, and fast.

 B th t t d t AT&T B ll L b Both started at AT&T Bell Labs.

 UNIX was written in assembly, later changed to
C.

Many variants of UNIX.

2

2

C vs. Java

 Java-like (actually Java has a C-like syntax),
some differencessome differences

 No //, only /* */ multi-line and no nesting

 No garbage collection

 No classes

 No exceptions (try … catch)

 No type strings

3

First C Program

#include <stdio.h>

i () {main() {

printf(“hello, world \n”);

}

Note: #include <filename.h> replaces the p
line by the actual file before compilation starts.

4

3

Special Characters

\n New line

\t Tab

\” Double quote

\\ The \ character

\0 The null character

\’ Single quote

5

More Examples

 We will discuss more programs given in Chapter 1 in
class.class.

 We will then learn basic input and output in C.

6

4

Basic Input and Output

CSE 2031

Fall 2010

712 September 2010

Basic I/O

 Every program has a standard input and output.

 U ll k b d d it ti l Usually, keyboard and monitor, respectively.

 Can use > and < for redirection

printf(“This is a test %d \n”, x)

scanf(“%x %d”, &x, &y)(, , y)

%d %s %c %f %lf

integer string character float double precision
8

5

getchar() (7.1)

 To read one character at a time from the
standard input (the keyboard by default):standard input (the keyboard by default):

int getchar(void)
 returns the next input char each time it is called;

 returns EOF when it encounters end of file.
EOF input: Ctrl-d (Unix) or Ctrl-z (Windows).

EOF value defined in <stdio.h> is -1.

9

putchar(c) (7.1)

 Puts the character c on the standard output (the
screen by default)screen by default).

int putchar(int)
 returns the character written;

 returns EOF if an error occurs.

10

6

Example

#include <stdio.h>

#include <ctype h>#include <ctype.h>

main() /* convert input to lower case*/

{

int c

while ((c = getchar()) != EOF)((g ()))

putchar(tolower(c));

return 0;

}

11

I/O Redirection

prog < infile

 prog reads characters

prog > outfile

 prog writes to outfile prog reads characters
from infile instead of the
standard input.

otherprog | prog

 Output from otherprog is

 prog writes to outfile
instead of the standard
output.

prog | anotherprog

 puts the standard output
the input to prog. of prog into the standard

input of anotherprog.

12

7

printf() (7.2)

int printf(char *format, arg1, arg2, ...);

 converts, formats, and prints its arguments on
the standard output under control of the
format.

 returns the number of characters printed (usually
we are not interested in the returned value).

13

printf() Examples

printf(“:%s:”, “hello, world”);

printf(“:%10s:”, “hello, world”);

printf(“:% 10s:” “hello world”);printf(:%.10s: , hello, world);

printf(“:%-10s:”, “hello, world”);

printf(“:%.15s:”, “hello, world”);

printf(“:%-15s:”, “hello, world”);

printf(“:%15.10s:”, “hello, world”);

printf(“:%-15.10s:”, “hello, world”);

14

8

printf Conversions

15

Output Formatting with printf()

 A minus sign, which specifies left adjustment of the converted
argument.

 A number that specifies the minimum field width. The converted
argument will be printed in a field at least this wide. If necessary it
will be padded on the left (or right, if left adjustment is called for) to
make up the field width.

 A period, which separates the field width from the precision.

 A number, the precision, that specifies the maximum number of
characters to be printed from a string, or the number of digits
after the decimal point of a floating-point value, or the minimum
number of digits for an integer.

16

9

scanf() (7.4)

 scanf() is the input analog of printf().

 To read an integer:
int num;

scanf("%d”, &num);

 &num is a pointer to num.

 To read a char and a float:
char c; float f;

scanf("%c %f”, &c, &f);

17

scanf Conversions

18

10

scanf()

int scanf(char *format, arg1, arg2, ...);

 reads characters from the standard input, interprets them according
to the specification in format, and stores the results through the
remaining arguments.

 stops when it exhausts its format string, or when some input fails to
match the control specification.

 returns the number of successfully matched and assigned input
items (e g to decide how many items were found)items (e.g., to decide how many items were found).

 returns 0 if the next input character does not match the first
specification in the format string (i.e., an error).

 On the end of file, EOF is returned.
 Note: arg1, arg2, ... must be pointers!

19

Next time ...

 Types, Operators and Expressions (Chapter 2)

20

