
1

File Access (7.5)

CSE 2031

Fall 2010

14 December 2010

Declaring and Opening Files

FILE *fp; /* file pointer */

FILE *fopen(char *name char *mode);FILE *fopen(char *name, char *mode);

Example:
FILE *ifp, *ofp;

char iname[50], oname[50];

ifp = fopen(iname, "r");p p (,);

if (ifp == NULL) { ... }

ofp = fopen(oname, "w");

2

2

Modes

fp = fopen(name, "r");

 Returns NULL if file does not exist or has no read Returns NULL if file does not exist, or has no read
permission.

fp = fopen(name, “w");

 If file does not exist, one will be created for writing.

 If file already exists, the content will be erased when the
file is opened. So be careful!

 Returns NULL if file has no write permission.

3

Modes (cont.)

fp = fopen(name, “a"); /* append */

 If file does not exist one will be created for writing If file does not exist, one will be created for writing.

 If file already exists, the content will be preserved.

 Returns NULL if file has no write permission.

 May combine multiple modes.
fp = fopen(name, "rw");p p (,);

File may be read first, but the old content will be erased as soon as
something is written to the file.

fp = fopen(name, "ra");

fp = fopen(name, “aw"); /* same as “a” */
4

3

Reading and Writing Files

int getc(FILE *fp)

int putc(int c, FILE *fp)p p

int fscanf(FILE *fp, char *format, ...)

int fprintf(FILE *fp, char *format, ...)

int c;

while ((c = getc(ifp)) != EOF)

putc(c, ofp);

char ch;

while (fscanf(ifp, “%c”, &ch) != EOF)

fprintf(ofp, “%c”, ch);

5

Closing Files

int fclose(FILE *fp)

fclose(ifp);

fclose(ofp);

 Most operating systems have some limit on the number of files that
a program may have open simultaneously  free the file pointers
when they are no longer neededwhen they are no longer needed.

 fclose is called automatically for each open file when a program
terminates normally.

 For output files: fclose flushes the buffer in which putc is
collecting output.

6

4

Reminder: I/O Redirection

 In many cases, I/O redirection is simpler than using file
pointers.pointers.

a.out < input_file > outout_file

a.out < input_file >> outout_file

7

Review: printf()and scanf()

8

5

printf() (7.2)

int printf(char *format, arg1, arg2, ...);

 converts, formats, and prints its arguments on
the standard output under control of the
format.

 returns the number of characters printed (usually
we are not interested in the returned value).

9

printf() Examples

printf(“:%s:”, “hello, world”);

printf(“:%10s:”, “hello, world”);

printf(“:% 10s:” “hello world”);printf(:%.10s: , hello, world);

printf(“:%-10s:”, “hello, world”);

printf(“:%.15s:”, “hello, world”);

printf(“:%-15s:”, “hello, world”);

printf(“:%15.10s:”, “hello, world”);

printf(“:%-15.10s:”, “hello, world”);

10

6

printf Conversions

11

Output Formatting with printf()

 A minus sign, which specifies left adjustment of the converted
argument.

 A number that specifies the minimum field width. The converted
argument will be printed in a field at least this wide. If necessary it
will be padded on the left (or right, if left adjustment is called for) to
make up the field width.

 A period, which separates the field width from the precision.

 A number, the precision, that specifies the maximum number of
characters to be printed from a string, or the number of digits
after the decimal point of a floating-point value, or the minimum
number of digits for an integer.

12

7

scanf Conversions (7.4)

13

scanf() Examples

int num;

scanf("%d” &num);

double dnum;

scanf("%lf” &dnum)scanf(%d , &num);

char c; float f;

scanf("%c %f”, &c,
&f);

scanf(%lf , &dnum)

char strg[100];

scanf(“%s”, strg);
Notes:

 no & in front of variable (why?)

long number;

scanf("%ld”, &number)

 ‘\0’ is added automatically to
end of string.

14

8

scanf()

int scanf(char *format, arg1, arg2, ...);

 reads characters from the standard input, interprets them according
to the specification in format, and stores the results through the
remaining arguments.

 stops when it exhausts its format string, or when some input fails to
match the control specification.

 returns the number of successfully matched and assigned input
items (e g to decide how many items were found)items (e.g., to decide how many items were found).

 returns 0 if the next input character does not match the first
specification in the format string (i.e., an error).

 On the end of file, EOF is returned.
 Note: arg1, arg2, ... must be pointers!

15

Final Exam

 December 15, 9am – 12pm.

 L ti h k R i t ’ ffi b it Location: check Registrar’s office web site.

Written exam only.

16

