File Access (7.5)

CSE 2031
Fall 2010

4 December 2010

Declaring and Opening Files

FILE *fp; /* file pointer */
FILE *fopen(char *name, char *mode);

Example:

FILE *ifp, *ofp;

char iname[50], oname[50];
ifp = fopen(iname, 'r");
if (ifp==NULL) { ... }
ofp = fopen(oname, "w");

Modes

fp = fopen(name, "'r");
Returns NULL if file does not exist, or has no read
permission.

fp = fopen(name, “w");
If file does not exist, one will be created for writing.

If file already exists, the content will be erased when the
file is opened. So be careful!

Returns NULL if file has no write permission.

Modes (cont.)

fp = fopen(name, “a"); /* append */
If file does not exist, one will be created for writing.
If file already exists, the content will be preserved.
Returns NULL if file has no write permission.

May combine multiple modes.

fp = fopen(name, "rw");
File may be read first, but the old content will be erased as soon as
something is written to the file.

fp = fopen(name, "ra");

fp = fopen(name, “aw™); /* same as “a” */

Reading and Writing Files

int getc(FILE *fp)
int putc(int c, FILE *fp)

int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)
int c;

while ((c = getc(ifp)) != EOF)
putc(c, ofp);

char ch;
while (fscanf(1ifp, “%c”, &ch) 1= EOF)
fprintf(ofp, “%c”, ch);

Closing Files
int fclose(FILE *fp)

fclose(ifp);
fclose(ofp);

Most operating systems have some limit on the number of files that
a program may have open simultaneously = free the file pointers

when they are no longer needed.

fclose is called automatically for each open file when a program

terminates normally.

For output files: fclose flushes the buffer in which putc is

collecting output.

Reminder: I/0O Redirection

In many cases, /O redirection is simpler than using file
pointers.

a.out < 1nput_file > outout_fTile

a.out < 1nput_file >> outout_file

Review: printf(Qand scant()

printf() (7.2)

int printf(char *format, argl, arg2,

)

converts, formats, and prints its arguments on

the standard output under control of the

format.

returns the number of characters printed (usually
we are not interested in the returned value).

printf() Examples

printf(“:%s:”, “hello, world”);
printf(“:%10s:”, “hello, world”);
printf(“:%.10s:”, “hello, world”);
printf(“:%-10s:", “hello, world”);
printf(“:%.15s:7, “hello, world”);
printf(“:%-15s:", “hello, world”);
printf(“:%15.10s:”, “hello, world”);
printf(“:%-15.10s:”, “hello, world™);
3= :hello, world:
:%1l0s: :hello, world:
:%.10s: :hello, wor:
:%-10s: :hello, world:
:%.15s: :hello, world:
1%-1bs: :hello, world
:%15.10=: hello, wor:
:%-15.10s :hello, wor

10

printf Conversions

|C]mrncte1' Argument type; Printed As
d,1i int; decimal number
|0 int; vnsigned octal number (without a leading zero)

int; vnsigned hexadecimal number (without a leading 0 or 0X), using abodef or
! ABCDEF for 10,15.

|: int; unsigned decimal number

|c int; single character

char *; print characters from the string untila ' 0 or the number of characters given
by the precision.

|:‘ double; [-]m.dddddd, where the mumber of d's is given by the precision (default 6).
double; [-]m.dddddde+/ -xx or [-]m.dddddde+ /-1, where the number of d's is
given by the precision (defanlt §).

double; use ¥ e or 3E if the exponent is less than -4 or greater than or equal to the

g precision; otherwise use 3 £. Trailing zeros and a trailing decimal point are not printed.
|p void *; pointer (implementation-dependent representation).
|% no argument is converted; print a %

11

Output Formatting with printf()

A minus sign, which specifies left adjustment of the converted
argument.

A number that specifies the minimum field width. The converted

argument will be printed in a field at least this wide. If necessary it

will be padded on the left (or right, if left adjustment is called for) to
make up the field width.

A period, which separates the field width from the precision.
A number, the precision, that specifies the maximum number of
characters to be printed from a string, or the number of digits
after the decimal point of a floating-point value, or the minimum
number of digits for an integer.

12

scanf Conversions (7.4)

|Chal‘acte1‘ ‘ Input Data; Argument type
|d ‘cleci.mal integer; int *
i integer; int *. The integer may be in octal (leading 0) or hexadecimal (leading 0x% or
0%).
|o ‘ocral mteger (with or without leading zero); int *
|u ‘mlsigﬂed decimal integer; unsigned int *
|x ‘hexndecimal integer (with or without leading 0x or 0X): int *
characters; char *. The next input characters (default 1) are placed at the indicated spot.
c The normal skip-over white space is suppressed: to read the next non-white space
character, use ¥1s
< character string (not quoted): char *. pointing to an array of characters long enough for
the string and a termiating '\ 0" that will be added.
e £ floating-point number with optional sign. optional decimal point and optional exponent:
tg float *
‘% |1ireral %: no assignment is made.

13

scanf() Examples

int num;
scanf('%d”, &num);

char c; float T;

scanf("'%c %f’, &c,
&F);

long number;
scanf(""%ld”, &number)

double dnum;
scanf(""%1¥”, &dnum)

char strg[100];

scanf(“%s”, strg);
Notes:
no & in front of variable (why?)

“\0” is added automatically to
end of string.

14

scanf()

int scanf(char *format, argl, arg2, ...);

reads characters from the standard input, interprets them according
to the specification in format, and stores the results through the

remaining arguments.

stops when it exhausts its format string, or when some input fails to
match the control specification.

returns the number of successfully matched and assigned input
items (e.g., to decide how many items were found).

returns 0 if the next input character does not match the first
specification in the format string (i.e., an error).

On the end of file, EOF is returned.
Note: argl, arg2, ... mustbe pointers!

15

Final Exam
December 15, 9am — 12pm.

Location: check Registrar’s office web site.
Written exam only.

16

