
1

File Access (7.5)

CSE 2031

Fall 2010

14 December 2010

Declaring and Opening Files

FILE *fp; /* file pointer */

FILE *fopen(char *name char *mode);FILE *fopen(char *name, char *mode);

Example:
FILE *ifp, *ofp;

char iname[50], oname[50]; 

ifp = fopen( iname, "r" );p p ( , );

if ( ifp == NULL ) { ... }

ofp = fopen( oname, "w" );

2



2

Modes

fp = fopen( name, "r" );

 Returns NULL if file does not exist or has no read Returns NULL if file does not exist, or has no read 
permission.

fp = fopen( name, “w" );

 If file does not exist, one will be created for writing.

 If file already exists, the content will be erased when the 
file is opened. So be careful!

 Returns NULL if file has no write permission.

3

Modes (cont.)

fp = fopen( name, “a" );   /* append */

 If file does not exist one will be created for writing If file does not exist, one will be created for writing.

 If file already exists, the content will be preserved.

 Returns NULL if file has no write permission.

 May combine multiple modes.
fp = fopen( name, "rw" );p p ( , );

File may be read first, but the old content will be erased as soon as 
something is written to the file.

fp = fopen( name, "ra" );

fp = fopen( name, “aw" );  /* same as “a” */
4



3

Reading and Writing Files

int getc( FILE *fp )

int putc( int c, FILE *fp )p p

int fscanf( FILE *fp, char *format, ... )

int fprintf( FILE *fp, char *format, ... )

int c; 

while ( (c = getc( ifp )) != EOF )

putc( c, ofp );

char ch;

while ( fscanf(  ifp, “%c”, &ch ) != EOF )

fprintf(  ofp, “%c”, ch );

5

Closing Files

int fclose( FILE *fp )

fclose( ifp );

fclose( ofp );

 Most operating systems have some limit on the number of files that 
a program may have open simultaneously   free the file pointers 
when they are no longer neededwhen they are no longer needed.

 fclose is called automatically for each open file when a program 
terminates normally.

 For output files: fclose flushes the buffer in which putc is 
collecting output.

6



4

Reminder: I/O Redirection

 In many cases, I/O redirection is simpler than using file 
pointers.pointers.

a.out < input_file > outout_file

a.out < input_file >> outout_file

7

Review: printf()and scanf()

8



5

printf( ) (7.2)

int printf(char *format, arg1, arg2, ...);

 converts, formats, and prints its arguments on 
the standard output under control of the 
format.

 returns the number of characters printed (usually 
we are not interested in the returned value).

9

printf( ) Examples

printf(“:%s:”, “hello, world”);

printf(“:%10s:”, “hello, world”);

printf(“:% 10s:” “hello world”);printf( :%.10s: , hello, world );

printf(“:%-10s:”, “hello, world”);

printf(“:%.15s:”, “hello, world”);

printf(“:%-15s:”, “hello, world”);

printf(“:%15.10s:”, “hello, world”);

printf(“:%-15.10s:”, “hello, world”);

10



6

printf Conversions

11

Output Formatting with printf( )

 A minus sign, which specifies left adjustment of the converted 
argument.

 A number that specifies the minimum field width. The converted 
argument will be printed in a field at least this wide. If necessary it 
will be padded on the left (or right, if left adjustment is called for) to 
make up the field width.

 A period, which separates the field width from the precision.

 A number, the precision, that specifies the maximum number of 
characters to be printed from a string, or the number of digits 
after the decimal point of a floating-point value, or the minimum 
number of digits for an integer.

12



7

scanf Conversions (7.4)

13

scanf( ) Examples

int num;

scanf("%d” &num);

double dnum;

scanf("%lf” &dnum)scanf( %d , &num);

char c; float f;

scanf("%c %f”, &c, 
&f);

scanf( %lf , &dnum)

char strg[100];

scanf(“%s”, strg);
Notes: 

 no & in front of variable (why?)

long number;

scanf("%ld”, &number)

 ‘\0’ is added automatically to 
end of string.

14



8

scanf( )

int scanf(char *format, arg1, arg2, ...);

 reads characters from the standard input, interprets them according 
to the specification in format, and stores the results through the 
remaining arguments.

 stops when it exhausts its format string, or when some input fails to 
match the control specification.

 returns the number of successfully matched and assigned input 
items (e g to decide how many items were found)items (e.g., to decide how many items were found).

 returns 0 if the next input character does not match the first 
specification in the format string (i.e., an error).

 On the end of file, EOF is returned.
 Note:  arg1, arg2, ... must be pointers!

15

Final Exam

 December 15, 9am – 12pm.

 L ti h k R i t ’ ffi b it Location: check Registrar’s office web site.

Written exam only.

16


