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In probability and statistics, Student's t-
distribution (or simply the t-distribution) is a 
continuous probability distribution that arises 
when estimating the mean of a normally 
distributed population in situations where the 
sample size is small. It plays a role in a number of 
widely-used statistical analyses, including the 
Student's t-test for assessing the statistical 
significance of the difference between two sample 
means, the construction of confidence intervals 
for the difference between two population means, 
and in linear regression analysis. The Student's t-
distribution also arises in the Bayesian analysis of 
data from a normal family.

The t-distribution is symmetric and bell-shaped, 
like the normal distribution, but has heavier tails, 
meaning that it is more prone to producing values 
that fall far from its mean. This makes it useful for 
understanding the statistical behavior of certain 
types of ratios of random quantities, in which 
variation in the denominator is amplified and may 
produce outlying values when the denominator of 
the ratio falls close to zero. The Student's t-
distribution is a special case of the generalised 
hyperbolic distribution.
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Introduction

History and etymology

In statistics, the t-distribution was first derived as a posterior distribution by Helmert and Lüroth.[2][3][4] 
In the English literature, a derivation of the t-distribution was published in 1908 by William Sealy 
Gosset[5] while he worked at the Guinness Brewery in Dublin. Since Gosset's employer forbade 
members of its staff from publishing scientific papers, his work was published under the pseudonym 
Student. The t-test and the associated theory became well-known through the work of R.A. Fisher, who 
called the distribution "Student's distribution".[6][7]

Examples

For examples of the use of this distribution, see Student's t test.

Characterization

Student's t-distribution is the probability distribution of the ratio[8]

where

Z is normally distributed with expected value 0 and variance 1;■



V has a chi-square distribution with ν ("nu") degrees of freedom;■

Z and V are independent.■

While, for any given constant µ,  is a random variable of noncentral t-distribution with 

noncentrality parameter µ.

Probability density function

Student's t-distribution has the probability density function

where ν is the number of degrees of freedom and Γ is the Gamma function.

For ν even,

For ν odd,

The overall shape of the probability density function of the t-distribution resembles the bell shape of a 
normally distributed variable with mean 0 and variance 1, except that it is a bit lower and wider. As the 
number of degrees of freedom grows, the t-distribution approaches the normal distribution with mean 0 
and variance 1.

The following images show the density of the t-distribution for increasing values of ν. The normal 

distribution is shown as a blue line for comparison. Note that the t-distribution (red line) becomes closer 

to the normal distribution as ν increases.

Density of the t-distribution (red) for 1, 2, 3, 5, 10, and 30 df compared to normal distribution (blue). Previous plots 
shown in green.
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Derivation

Suppose X1, ..., Xn are independent values that are normally distributed with expected value µ and 

variance σ2. Let

be the sample mean, and

be the sample variance. It can be shown that the random variable



has a chi-square distribution with n − 1 degrees of freedom (by Cochran's theorem). It is readily shown 
that the quantity

is normally distributed with mean 0 and variance 1, since the sample mean  is normally distributed 

with mean μ and standard error . Moreover, it is possible to show that these two random 

variables—the normally distributed one and the chi-square-distributed one—are independent. 
Consequently the pivotal quantity,

which differs from Z in that the exact standard deviation σ is replaced by the random variable Sn, has a 

Student's t-distribution as defined above. Notice that the unknown population variance σ2 does not 
appear in T, since it was in both the numerator and the denominators, so it canceled. Gosset's work 
showed that T has the probability density function

with ν equal to n − 1.

This may also be written as

where B is the Beta function.

The distribution of T is now called the t-distribution. The parameter ν is called the number of degrees 

of freedom. The distribution depends on ν, but not µ or σ; the lack of dependence on µ and σ is what 

makes the t-distribution important in both theory and practice.

Gosset's result can be stated more generally. (See, for example, Hogg and Craig, Sections 4.4 and 4.8.) 

Let Z have a normal distribution with mean 0 and variance 1. Let V have a chi-square distribution with ν 

degrees of freedom. Further suppose that Z and V are independent (see Cochran's theorem). Then the 
ratio



has a t-distribution with ν degrees of freedom.

Cumulative distribution function

The cumulative distribution function is given by the regularized incomplete beta function,

with

Properties

Moments

The moments of the t-distribution are

It should be noted that the term for 0 < k < ν, k even, may be simplified using the properties of the 

Gamma function to

For a t-distribution with ν degrees of freedom, the expected value is 0, and its variance is ν/(ν − 2) if 

ν > 2. The skewness is 0 if ν > 3 and the excess kurtosis is 6/(ν − 4) if ν > 4.

Related distributions

■  has a t-distribution if  has a scaled inverse-χ2 distribution and 

 has a normal distribution.

■  has an F-distribution if  and  has a Student's t-

distribution.



Monte Carlo sampling

There are various approaches to constructing random samples from the Student distribution. The matter 
depends on whether the samples are required on a stand-alone basis, or are to be constructed by 
application of a quantile function to uniform samples, e.g. in multi-dimensional applications basis on 
copula-dependency. In the case of stand-alone sampling, Bailey's 1994 extension of the Box-Muller 
method and its polar variation are easily deployed. It has the merit that it applies equally well to all real 
positive and negative degrees of freedom.

Integral of Student's probability density function and p-value

The function  is the integral of Student's probability density function, ƒ(t) between −t and t. It thus 
gives the probability that a value of t less than that calculated from observed data would occur by 
chance. Therefore, the function  can be used when testing whether the difference between the 
means of two sets of data is statistically significant, by calculating the corresponding value of t and the 
probability of its occurrence if the two sets of data were drawn from the same population. This is used in 
a variety of situations, particularly in t-tests. For the statistic t, with  degrees of freedom,  is the 
probability that t would be less than the observed value if the two means were the same (provided that 
the smaller mean is subtracted from the larger, so that t > 0). It is defined for real t by the following 
formula:

where B is the Beta function. For t > 0, there is a relation to the regularized incomplete beta function Ix

(a, b) as follows:

For statistical hypothesis testing this function is used to construct the p-value.

Related distributions

Three-parameter version

Student's t distribution can be generalized to a three parameter location/scale family[9] that introduces a 

location parameter μ and an inverse scale parameter (i.e. precision) λ, and has a density defined by

Other properties of this version of the distribution are[9]:



This distribution results from compounding a Gaussian distribution with mean μ and unknown precision 

(the reciprocal of the variance), with a gamma distribution with parameters a = ν / 2 and 

b = ν / 2λ. In other words, the random variable X is assumed to have a normal distribution with an 

unknown precision distributed as gamma, and then this is marginalized over the gamma distribution. 
(The reason for the usefulness of this characterization is that the gamma distribution is the conjugate 
prior distribution of the precision of a Gaussian distribution. As a result, the three-parameter Student's t 
distribution arises naturally in many Bayesian inference problems.)

The noncentral t-distribution is a different way of generalizing the t-distribution to include a location 
parameter.

Discrete version

The "discrete Student's t distribution" is defined by its probability mass function at r being proportional 
to[10]

Here 'a', b, and k are parameters. This distribution arises from the construction of a system of discrete 
distributions similar to that of the Pearson distributions for continuous distributions.[11]

Special cases

Certain values of ν give an especially simple form.

ν = 1

Distribution function:

Density function:

See Cauchy distribution



ν = 2

Distribution function:

Density function:

Uses

In frequentist statistical inference

Student's t-distribution arises in a variety of statistical estimation problems where the goal is to estimate 
an unknown parameter, such as a mean value, in a setting where the data are observed with additive 
errors. If (as in nearly all practical statistical work) the population standard deviation of these errors is 
unknown and has to be estimated from the data, the t-distribution is often used to account for the extra 
uncertainty that results from this estimation. In most such problems, if the standard deviation of the 
errors were known, a normal distribution would be used instead of the t-distribution.

Confidence intervals and hypothesis tests are two statistical procedures in which the quantiles of the 
sampling distribution of a particular statistic (e.g. the standard score) are required. In any situation where 
this statistic is a linear function of the data, divided by the usual estimate of the standard deviation, the 
resulting quantity can be rescaled and centered to follow Student's t-distribution. Statistical analyses 
involving means, weighted means, and regression coefficients all lead to statistics having this form.

Quite often, textbook problems will treat the population standard deviation as if it were known and 
thereby avoid the need to use the Student's t-distribution. These problems are generally of two kinds: (1) 
those in which the sample size is so large that one may treat a data-based estimate of the variance as if it 
were certain, and (2) those that illustrate mathematical reasoning, in which the problem of estimating the 
standard deviation is temporarily ignored because that is not the point that the author or instructor is then 
explaining.

Hypothesis testing

A number of statistics can be shown to have t-distributions for samples of moderate size under null 
hypotheses that are of interest, so that the t-distribution forms the basis for significance tests. For 
example, the distribution of Spearman's rank correlation coefficient ρ, in the null case (zero correlation) 
is well approximated by the t distribution for sample sizes above about 20 [citation needed].

Confidence intervals

Suppose the number A is so chosen that



when T has a t-distribution with n − 1 degrees of freedom. By symmetry, this is the same as saying that 
A satisfies

so A is the "95th percentile" of this probability distribution, or A = t(0.05,n − 1). Then

and this is equivalent to

Therefore the interval whose endpoints are

is a 90-percent confidence interval for µ. Therefore, if we find the mean of a set of observations that we 
can reasonably expect to have a normal distribution, we can use the t-distribution to examine whether 
the confidence limits on that mean include some theoretically predicted value - such as the value 
predicted on a null hypothesis.

It is this result that is used in the Student's t-tests: since the difference between the means of samples 
from two normal distributions is itself distributed normally, the t-distribution can be used to examine 
whether that difference can reasonably be supposed to be zero.

If the data are normally distributed, the one-sided (1 − a)-upper confidence limit (UCL) of the mean, can 
be calculated using the following equation:

The resulting UCL will be the greatest average value that will occur for a given confidence interval and 
population size. In other words,  being the mean of the set of observations, the probability that the 

mean of the distribution is inferior to UCL1−a is equal to the confidence level 1 − a.

Prediction intervals

The t-distribution can be used to construct a prediction interval for an unobserved sample from a normal 
distribution with unknown mean and variance.



Robust parametric modeling

The t-distribution is often used as an alternative to the normal distribution as a model for data.[12] It is 
frequently the case that real data have heavier tails than the normal distribution allows for. The classical 
approach was to identify outliers and exclude or downweight them in some way. However, it is not 
always easy to identify outliers (especially in high dimensions), and the t-distribution is a natural choice 
of model for such data and provides a parametric approach to robust statistics.

Lange et al. explored the use of the t-distribution for robust modeling of heavy tailed data in a variety of 
contexts. A Bayesian account can be found in Gelman et al. The degrees of freedom parameter controls 
the kurtosis of the distribution and is correlated with the scale parameter. The likelihood can have 
multiple local maxima and, as such, it is often necessary to fix the degrees of freedom at a fairly low 
value and estimate the other parameters taking this as given. Some authors report that values between 3 
and 9 are often good choices. Venables and Ripley suggest that a value of 5 is often a good choice.

Table of selected values

Most statistical textbooks list t distribution tables. Nowadays, the better way to a fully precise critical t 
value or a cumulative probability is the statistical function implemented in spreadsheets (Office Excel, 
OpenOffice Calc, etc.), or an interactive calculating web page. The relevant spreadsheet functions are 
TDIST and TINV, while online calculating pages save troubles like positions of parameters or names of 
functions. For example, a Mediawiki page supported by R extension can easily give the interactive result 
(http://mars.wiwi.hu-
berlin.de/mediawiki/slides/index.php/Comparison_of_noncentral_and_central_distributions) of critical 
values or cumulative probability, even for noncentral t-distribution.

The following table lists a few selected values for t-distributions with ν degrees of freedom for a range 

of one-sided or two-sided critical regions. For an example of how to read this table, take the fourth row, 

which begins with 4; that means ν, the number of degrees of freedom, is 4 (and if we are dealing, as 

above, with n values with a fixed sum, n = 5). Take the fifth entry, in the column headed 95% for one-
sided (90% for two-sided). The value of that entry is "2.132". Then the probability that T is less than 
2.132 is 95% or Pr(−∞ < T < 2.132) = 0.95; or mean that Pr(−2.132 < T < 2.132) = 0.9.

This can be calculated by the symmetry of the distribution,

Pr(T < −2.132) = 1 − Pr(T > −2.132) = 1 − 0.95 = 0.05,

and so

Pr(−2.132 < T < 2.132) = 1 − 2(0.05) = 0.9.

Note that the last row also gives critical points: a t-distribution with infinitely-many degrees of freedom 
is a normal distribution. (See above: Related distributions).



One Sided 75% 80% 85% 90% 95% 97.5% 99% 99.5% 99.75% 99.9% 99.95%

Two Sided 50% 60% 70% 80% 90% 95% 98% 99% 99.5% 99.8% 99.9%

1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437

12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318

13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221

14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015

17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965

18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922

19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819

22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792

23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767

24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707

27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690

28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674

29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551

50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496

60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

80 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416



100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390

120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373

0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

The number at the beginning of each row in the table above is ν which has been defined above as n − 1. 

The percentage along the top is 100%(1 − α). The numbers in the main body of the table are tα,ν. If a 

quantity T is distributed as a Student's t distribution with ν degrees of freedom, then there is a 

probability 1 − α that T will be less than tα,ν.(Calculated as for a one-tailed or one-sided test as opposed 
to a two-tailed test.)

For example, given a sample with a sample variance 2 and sample mean of 10, taken from a sample set 
of 11 (10 degrees of freedom), using the formula

We can determine that at 90% confidence, we have a true mean lying below

(In other words, on average, 90% of the times that an upper threshold is calculated by this method, the 
true mean lies below this upper threshold.) And, still at 90% confidence, we have a true mean lying over

(In other words, on average, 90% of the times that a lower threshold is calculated by this method, the 
true mean lies above this lower threshold.) So that at 80% confidence (calculated from 
1 − 2 × (1 − 90%) = 80%), we have a true mean lying within the interval

This is generally expressed in interval notation, e.g., for this case, at 80% confidence the true mean is 
within the interval [9.41490, 10.58510].

(In other words, on average, 80% of the times that upper and lower thresholds are calculated by this 
method, the true mean is both below the upper threshold and above the lower threshold. This is not the 
same thing as saying that there is an 80% probability that the true mean lies between a particular pair of 
upper and lower thresholds that have been calculated by this method—see confidence interval and 
prosecutor's fallacy.)

For information on the inverse cumulative distribution function see Quantile function.
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