
9/19/2010

1

Transport Protocols and TCP:

CSE 6590
Fall 2010

Department of Computer Science & Engineering
York University

Review

York University

19 September 20101
1

Connection Establishment and
Termination

2
2

9/19/2010

2

Connection Establishment and
Termination

 required by connection-oriented transport protocols
like TCP

 need connection establishment and termination
procedures to allow:
 each end to know the other exists
 negotiation of optional parameters
 triggers allocation of transport entity resources

3

 triggers allocation of transport entity resources

3

Connection State Diagram

Assume a reliable
network (no loss
seen at theseen at the
transport layer).

4
4

9/19/2010

3

Connection Establishment
Diagram

5
5

What if either SYN is
lost? (discussed later)

Assume a reliable network (no
loss seen at the transport layer).

Connection Termination

 either or both sides by mutual agreement
f l b t t i ti graceful or abrupt termination

 if graceful, initiator must:
 send FIN to other end, requesting termination
 place connection in FIN WAIT state
 when FIN received, inform user and close connection

 other end must:

6

 when receives FIN must inform TS user and place
connection in CLOSE WAIT state

 when TS user issues CLOSE primitive, send FIN &
close connection

6

9/19/2010

4

Connection Establishment

 two way handshake
 A send SYN B replies with SYN A send SYN, B replies with SYN
 lost SYN handled by re-transmission
 ignore duplicate SYNs once connected

 lost or delayed data segments can cause
connection problems
 eg. segment from old connection

7

g g

7

Two Way
Handshake:
Obsolete
Data
Segment

S l ti t ti SN i f

8
8

Solution: starting SN is far away
from the last SN of the previous
connection.

Use request of the form SYNi
where i +1 is the SN of the first
data segment to be sent.

9/19/2010

5

Two Way Handshake:
Obsolete SYN Segment

9
9

TCP Three
Way
Handshake:
StateState
Diagram

10
10

9/19/2010

6

TCP Three
Way
Handshake:
Examples

11
11

TCP Connection Establishment:
Summary

 three way handshake three way handshake
 SYN, SYN-ACK, ACK

 connection determined by source and destination
sockets (host, port)

 can only have a single connection between any
unique pairs of ports

12

q p p

 but one port can connect to multiple ports

9/19/2010

7

Connection Termination (2)
 also need 3-way handshake

 misordered segments could cause: misordered segments could cause:
 entity in CLOSE WAIT state sends last data

segment, followed by FIN
 FIN arrives before last data segment
 receiver accepts FIN, closes connection, loses data

 need to associate sequence number with FIN

13

 receiver waits for all segments before FIN
sequence number

13

Connection Termination:
Graceful Close

 also have problems with loss of segments and
b l t tobsolete segments

 need graceful close which will:
 send FIN i and receive AN i+1
 receive FIN j and send AN j+1
 wait twice maximum expected segment lifetime

14
14

9/19/2010

8

TCP Flow Control

15
15

Flow Control

 Fixed sliding window approach
 works well on reliable networks works well on reliable networks
 does not work well on unreliable networks such as IP

internet

 Credit scheme
 more flexible
 works for IP
 used in TCP

16

 used in TCP

16

9/19/2010

9

Credit Scheme

 decouples flow control from ACK

 each octet has sequence number

 each transport segment has seq number (SN),
ack number (AN) and window size (W) in header

 sends seq number of first octet in segment

 ACK includes (AN=i, W=j) which means

17

(j)
 all octets through SN=i-1 acknowledged, want i next
 permission to send additional window of W=j octets

17

Credit Allocation

18
18

9/19/2010

10

Sending and Receiving
Perspectives

19
19

Retransmission Strategy
 retransmission of segment needed because
 segment damaged in transitg g
 segment fails to arrive

 transmitter does not know of failure

 receiver must acknowledge successful receipt
 can use cumulative acknowledgement for efficiency

 sender times out waiting for ACK triggers

20

sender times out waiting for ACK triggers
re-transmission

20

9/19/2010

11

Retransmit Policy

 TCP has a queue of segments transmitted but not
acknowledgedacknowledged

 will retransmit if not ACKed in given time
 first only - single timer, send the front segment when

timer expires, efficient, considerable delays
 batch - single timer, send all segments when timer

expires, has unnecessary retransmissions
 individual timer for each segment lower delay more

21

 individual - timer for each segment, lower delay, more
efficient, but complex

 effectiveness depends in part on receiver’s accept
policy

Accept Policy

 segments may arrive out of order

i d in order
 only accept segments in order
 discard out of order segments
 simple implementation, but burdens network

 in windows
 accept all segments within receive window

22

 accept all segments within receive window
 reduce transmissions
 more complex implementation with buffering

9/19/2010

12

Acknowledgement Policy
 immediate
 send empty ACK for each accepted segmentp y p g
 simple at cost of extra transmissions

 cumulative
 piggyback ACK on suitable outbound data

segments unless persist timer expires
 when send empty ACK

l b t ffi i t

23

 more complex but efficient

Duplication Detection

 if ACK lost, segment duplicated & re-transmitted

 receiver must recognize duplicates

 if duplicate received prior to closing connection
 receiver assumes ACK lost and ACKs duplicate
 sender must not get confused with multiple ACKs
 need a sequence number space large enough to not

cycle within maximum life of segment

24

cycle within maximum life of segment

24

9/19/2010

13

Incorrect
Duplicate

25

Duplicate
Detection

25

TCP Congestion Control

26
26

9/19/2010

14

TCP Congestion Control

 flow control also used for congestion control
 recognize increased transit times & dropped packets recognize increased transit times & dropped packets
 react by reducing flow of data

 RFC’s 1122 and 2581 detail extensions
 Tahoe, Reno and New Reno implementations

 two categories of extensions:
 retransmission timer management

i d t

27

 window management

27

Retransmission Timer Management
 static timer likely too long or too short
 estimate round trip delay by observing pattern p y y g p

of delay for recent segments
 set time to value a bit greater than estimated

RTT
 simple average over a number of segments
 exponential average using time series

(RFC793)

28

(RFC793)

9/19/2010

15

Computing RTT
 Simple average







1

1

)(
1

1
)1(

K

i

iRTT
K

Kr

)1(
1

1
)(

1
)1(





 KRTT

K
Kr

K

K
Kr

29

 Exponential average

29

10

)1()1()()1(




a

KRTTaKraKr

Use of
Exponential p
Averaging

30

9/19/2010

16

Exponential RTO Backoff

 timeout probably due to congestion
 dropped packet or long round trip time dropped packet or long round trip time

 hence maintaining same RTO is not good idea
 better to increase RTO each time a segment is

re-transmitted
 RTO = q*RTO
 commonly q = 2 (binary exponential backoff)
 as in Ethernet CSMA/CD

31

 as in Ethernet CSMA/CD

Window Management

 slow start
l i d bl ti t d larger windows cause problem on connection created

 at start limit TCP to 1 segment
 increase when data ACK, exponential growth

 dynamic windows sizing on congestion
 when a timeout occurs perhaps due to congestion
 set slow start threshold to half current congestion

32

 set slow start threshold to half current congestion
window

 set window to 1 and slow start until threshold
 beyond threshold, increase window by 1 for each RTT

9/19/2010

17

Summary
 Assigns a congestion window Cw:
 Initial value of Cw = 1 (packet)
 If trx successful, congestion window doubled. Continues

until Cmax is reached
 After Cw ≥ Cmax, Cw = Cw + 1
 If timeout before ACK, TCP assumes congestion

 TCP response to congestion is drastic:
 A random backoff timer disables all transmissions for

duration of timer

33

duration of timer
 Cw is set to 1
 Cmax is set to Cmax / 2

 Congestion window can become quite small for
successive packet losses.

33

Window Management

34

9/19/2010

18

Fast Retransmit, Fast Recovery

 retransmit timer rather longer than RTT
 if segment lost TCP slow to retransmit if segment lost TCP slow to retransmit
 fast retransmit
 if receive a segment out of order, issue an ACK for the

last in-order segment correctly received. Repeat this
until the missing segment arrives.

 if receive 4 ACKs for the same segment then
immediately retransmit (without waiting for timer) since
it is likely to have been lost

35

it is likely to have been lost.
 fast recovery
 lost segment means some congestion
 halve window then increase linearly
 avoids slow-start

Window Management Examples

36
36

9/19/2010

19

Reading
 Data and Computer Communications by William

Stallings, Chapter 20.

37
37

