
Introduction to
Answer Set Programming

Sheila McIlraith
CSC2542

Department of Computer Science
University of Toronto

April 19, 2006

CSC2542 ASP Lecture – April, 2006

Acknowledgements

The material in this presentation was drawn from papers
and slides by the following people: Chitta Baral, Michael
Gelfond, Vladimir Lifschitz, Ilka Niemela, Aarati Pamar,
Torsten Schwaub, and Son Cao Tran.

CSC2542 ASP Lecture – April, 2006

Answer Set Programming
Answer Set Programming (ASP) is a form of declarative programming

oriented towards combinatorial problems (i.e., search).

Syntactically: Looks like logic programming
Computationally: Similar to SAT solving

Example Applications:
• plan generation
• product configuration
• diagnosis
• default reasoning
• graph theory problems in VLSI

…basically anything where the solutions to the problem can be
characterized as (preferred) models.

CSC2542 ASP Lecture – April, 2006

What’s so great about ASP?

Effective computational machinery for problem domains that require
combinatorial search together with

– Nonmonotonic reasoning (including closed world assumption,
frame problem, default reasoning, etc.)

– Reasoning with incomplete information

CSC2542 ASP Lecture – April, 2006

Approach

Recall that in SAT

The solutions to the problem are the models of the propositional theory.

Problem Logic Program ASP Solver

Similarly in ASP,

The solutions to the problem are the answer sets of the logic program

Problem propositional
theory SAT Solver

E.g., plan generation,
product configuration
diagnosis, verification

CSC2542 ASP Lecture – April, 2006

Answer Set Programming

…So what are answer sets
and how do we compute them?

CSC2542 ASP Lecture – April, 2006

Outline
• Origins of ASP

• Quick Review of Logic Programming Semantics

• Answer Set Semantics

– Introduction

– Examples

– Equivalence to Default Logic

• Computing Answer Sets

– smodels

– dlv

– assat, cmodels, noMoRe

• Smodels Example

CSC2542 ASP Lecture – April, 2006

Origins of ASP

Proposed in the late 1990s as a new logic programming paradigm.
(e.g., Lifschitz, 1999; Marek and Truszczynski, 1999; Niemela 1999)

Emerged from the interaction of 2 lines of research:
1. Semantics of negation in logic programming

(I.e., stable model semantics for logic programs
(Gelfond and Lifschitz, 1988))

2. Application of SAT solvers to search problems
(e.g., Kautz and Selman, 1992)

“Stable Model Semantics” are the same as “Answer Set Semantics”

CSC2542 ASP Lecture – April, 2006

Review of Logic Pgming Semantics
!"– a first order language with its usual components (e.g., variables,

constants, function symbols, predicate symbols, etc.
U! – Herbrand Universe of the language ! : the set of all ground terms

which can be formed with the functions and constants in !.
B! – Herbrand Base of a language ! : the set of all ground atom which

can be formed with the functions, constants and predicates in !.
E.g., consider a language !1 with variables X,Y; constants a,b; function

symbol f of arity 1; and predicate symbol p of arity 1.
U!# = {a,b,f(a),f(b),f(f(a)),f(f(b)),f(f(f(a))),f(f(f(b))),…}
B!# = {p(a),p(b),p(f(a)),p(f(b)),p(f(f(a)),p(f(f(b))),p(f(f(f(a))), …}

A Herbrand Interpretation of a logic program P is a set of atoms from its
Herbrand Base.

The Least Herbrand Model of a program P is called the minimal model
of P.

CSC2542 ASP Lecture – April, 2006

Logic Programming Semantics (cont)

Definite logic programs, having rules of the form (no not’s in the body):
Ri: L1 Ll+1,…,Lm.

have a unique intended Herbrand model – the least Herbrand model.

CSC2542 ASP Lecture – April, 2006

Logic Programming Semantics (cont)
Unfortunately, when you add negation, things get complicated.
General (aka) Normal logic programs have rules of the form

Ri: L1 Ll+1,…,Lm,not Lm+1,…,not Ln

where the not is negation as failure (Clark, 1978);(Reiter, 1978))

• Usually there is no unique least Herbrand model.
• Choosing a single intended model is difficult.
• Logic programming schism:

1. Single intended model approach, e.g.,
• Perfect semantics of stratified programs
• 3-valued well-founded semantics for (arbitrary) programs.

2. Multiple preferred model approach, e.g.,
• Stable model semantics (aka answer set semantics)

CSC2542 ASP Lecture – April, 2006

Answer Set Semantics

Intuitively,
An answer set is the minimal set of atoms (using set inclusion)
that satisfies a set of prolog-style rules.

Ri: L1;…;Lk;not Lk+1;…;not Ll
Ll+1,…,Lm,not Lm+1,…,not Ln

CSC2542 ASP Lecture – April, 2006

Answer Set Semantics

Intuitively,
An answer set is the minimal set of atoms (using set inclusion)
that satisfies a set of prolog-style rules.

Ri: L1;…;Lk;not Lk+1;…;not Ll
Ll+1,…,Lm,not Lm+1,…,not Ln

Satisfaction of the rules is defined in terms of the concept of reducts of
the rules – transformations of the rules Ri that are used to check if an
answer set M satisfies Ri . (Gelfond and Lifschitz, 1988).

Intuitively, a literal is only in the answer set if it is justified by a rule in the
program P.

CSC2542 ASP Lecture – April, 2006

Answer Set Semantics – Definite Programs

If there is no negation (no nots), the definition of an answer set is easy.
Given, rules of the form:

Ri: L1;…;Lk Ll+1,…,Lm

M is an answer set when for each Ri,
if all of Ll+1,…,Lmare in M, then at least one of L1,…,Lk is in M,
and M is the minimal such set (under set inclusion).

Another way to think about this is that every literal in the answer set has
to have a reason to be in M.

The answer set of a definite program P is the smallest subset M of the
Herbrand Base such that for any rule Lk Ll+1,…,Lm from P, if Ll+1,…,Lm is
in M then Lk is in M.

CSC2542 ASP Lecture – April, 2006

Now let’s add negation. For normal logic programs, given
P = Ri – a propositional normal logic program

Ri: L1 L2,…,Lm,not Lm+1,…,not Ln
M – set of atoms (which are the potential answer set)

Reduct PM (aka Ri M) is a definite program constructed as follows:
- For each atom L M, remove rules with not L in the body
- Remove literals not L from all other rules

M is an answer set of P if M is a least model of the reduct.

Again, intuitively, a literal is only in the answer set if it is justified by a
rule in the program P.

Answer Set Semantics - Normal Logic Programs

CSC2542 ASP Lecture – April, 2006

In the most general case,if there is negation in the head and body of the
rules, and disjunction in the head, i.e., if rules are of the form:
Ri: L1;…;Lk;not Lk+1;…;not Ll

Ll+1,…,Lm,not Lm+1,…,not Ln

Take the reduct Ri
M

. I.e.,
• take the set of rules where all of Lk+1,…,Ll are in M

and none of Lm+1,…,Ln are.
• remove not Lm+1,…,not Ln from all remaining rules.

Resulting rules in the reduct will be of the form:
Ri’: L1;…;Lk Ll+1,…,Lm

M is an answer set for Ri iff it is for Ri
M

Answer Set Semantics – The General Case

CSC2542 ASP Lecture – April, 2006

Reduct Intuition (Gelfond)

Take a set of literals M. For each rule Ri of the form:

Ri: L1;…;Lk;not Lk+1;…;not Ll
Ll+1,…,Lm,not Lm+1,…,not Ln

Either at least one of the Lm+1,…,Ln is in M, or none are.

• If at least one of the Lm+1,…,Ln is in M then the rule can’t
possibly fire, so we throw it out of the reduct.

• If none of Lm+1,…,Ln is in M then the rule is equivalent to

Ri’: L1;…;Lk;not Lk+1;…;not Ll Ll+1,…,Lm

CSC2542 ASP Lecture – April, 2006

Reduct Intuition (continued)

Continuing with a subset of the rules of the form:
Ri’: L1;…;Lk;not Lk+1;…;not Ll Ll+1,…,Lm

• If at least one of the Lk+1,…,Ll is missing from M then the rule is
automatically satisfied, so we throw it out of the reduct.

• If all of the Lk+1,…,Ll are in M then the rule is still not satisfied,
and we can write it as:
Ri”: L1;…;Lk Ll+1,…,Lm

The intuition is that if M still satisfies Ri
M after these transformations,

then it should satisfy Ri
.

CSC2542 ASP Lecture – April, 2006

Answer Set Semantics

I.e., an answer set is closed under the rules of P, and it is grounded in P,
that is, each of its atoms has a derivation using applicable rules from P.
Answer set was originally called stable model because it was indeed
“stable”.
Obviously we can have many answer sets. As with SAT problem
encodings, these models correspond to different solutions to a problem
(e.g., different plans, different diagnoses, etc.), and again as with SAT, P
entails a formula f if f is true in all answer set of P.
So for query answering, the answer to the ground query q is

• yes if q is true in all answer sets of P
• no if –q is true in all answer sets of P and
• unknown otherwise.

Let Cn(PM) denote the smallest set of atoms that is closed under the reduct
PM. A set M of atoms is an answer set (aka stable model) of a
program P iff Cn(PM)= M.

CSC2542 ASP Lecture – April, 2006

Example 1
An easy first example with no negation in the body.

p,q. (1)
-r p. (2)

Either p or q has to be in M,yielding the following candidate answer sets:
p , q , p, q

Then rule (2) fires p so we must include -r, yielding
p , -r , q , p, q , -r

Applying the minimality criterion yields two answer sets:
p , -r and q

CSC2542 ASP Lecture – April, 2006

Example 2
A second example:

p_next p, not p_next’. (1)
p_next’ p’, not p_next. (2)

p,p’. (3)
p_next,p_next’. (4)

p,p’. (5)

No matter what M we choose, (3)-(5) will be in the reduct.
(5) tells us we need an answer set for both p and p’ but not together
since (3) tells us they are mutually exclusive, as are p_next,p_next’.
So the candidate answer sets are:

p , p’ , p, p_next , p’, p_next ,
p, p_next’ , p’, p_next’ .

CSC2542 ASP Lecture – April, 2006

Example 2 (continued)

Now let’s compute the reducts for each candidate M.
p_next p, not p_next’. (1)
p_next’ p’, not p_next. (2)

p,p’. (3)
p_next,p_next’. (4)

p,p’. (5)
M = p
M = p’
M = p, p_next
M = p’, p_next
M = p, p_next’
M = p’, p_next’ .

CSC2542 ASP Lecture – April, 2006

Example 2 (continued)

Now let’s compute the reducts for each candidate M.
p_next p, not p_next’. (1)
p_next’ p’, not p_next. (2)

p,p’. (3)
p_next,p_next’. (4)

p,p’. (5)
M = p
M = p’
M = p, p_next
M = p’, p_next
M = p, p_next’
M = p’, p_next’ .

Ri M= p_next p.,p_next’ p’.,(3),(4),(5).
Ri M= p_next p.,p_next’ p’.,(3),(4),(5).

Ri M= p_next p.,(3),(4),(5).
Ri M= p_next p.,(3),(4),(5).
Ri M= p_next’ p’.,(3),(4),(5).
Ri M= p_next’ p’.,(3),(4),(5).

CSC2542 ASP Lecture – April, 2006

Example 2 (continued)

Now let’s compute the reducts for each candidate M.
p_next p, not p_next’. (1)
p_next’ p’, not p_next. (2)

p,p’. (3)
p_next,p_next’. (4)

p,p’. (5)
M = p
M = p’
M = p, p_next
M = p’, p_next
M = p, p_next’
M = p’, p_next’ .

Ri M= p_next p.,p_next’ p’.,(3),(4),(5).
Ri M= p_next p.,p_next’ p’.,(3),(4),(5).

Ri M= p_next p.,(3),(4),(5).
Ri M= p_next p.,(3),(4),(5).
Ri M= p_next’ p’.,(3),(4),(5).
Ri M= p_next’ p’.,(3),(4),(5).

CSC2542 ASP Lecture – April, 2006

Equivalence to Default Logic
Recall default logic statements of the form

L1,…,Lm : - Lm+1,…,- Ln (1)
L0

State that if L1,…,Lm are true
and we can consistently assume - Lm+1,…,- Ln then infer L0

CSC2542 ASP Lecture – April, 2006

Equivalence to Default Logic
Recall default logic statements of the form

L1,…,Lm : - Lm+1,…,- Ln (1)
L0

State that if L1,…,Lm are true
and we can consistently assume - Lm+1,…,- Ln then infer L0

(1)is equivalent to the answer set of
R: L0 L1,…,Lm,not Lm+1,…,not Ln

CSC2542 ASP Lecture – April, 2006

Equivalence to Default Logic
Recall default logic statements of the form

L1,…,Lm : - Lm+1,…,- Ln (1)
L0

State that if L1,…,Lm are true
and we can consistently assume - Lm+1,…,- Ln then infer L0

(1)is equivalent to the answer set of
R: L0 L1,…,Lm,not Lm+1,…,not Ln

This makes intuitive sense: M is an answer set of R if M lacks
Lm+1,…,Ln and includes L1,…,Lm and L0.

CSC2542 ASP Lecture – April, 2006

Equivalence to Default Logic
Recall default logic statements of the form

L1,…,Lm : - Lm+1,…,- Ln (1)
L0

State that if L1,…,Lm are true
and we can consistently assume - Lm+1,…,- Ln then infer L0

(1)is equivalent to the answer set of
R: L0 L1,…,Lm,not Lm+1,…,not Ln

This makes intuitive sense: M is an answer set of R if M lacks
Lm+1,…,Ln and includes L1,…,Lm and L0.
More formally

M is an answer set of Ri iff the deductive closure of M
is a consistent extension of the equivalent default theory.

CSC2542 ASP Lecture – April, 2006

Equivalence to Default Logic (cont.)

Example 2 can be interpreted as a default theory by replacing pred’ by
-pred.

Answer Set Pgm Default Theory
p_next p, not p_next’.
p_next’ p’, not p_next.

p,p’.
p_next,p_next’.

p,p’.

Notice that this is just the commonsense law of inertia for p.
Extensions: p ,p_next and -p,-p_next

p : p_next
p_next

-p : -p_next
-p_next

p - p

CSC2542 ASP Lecture – April, 2006

Outline
Origins of ASP

Quick Review of Logic Programming Semantics

Answer Set Semantics

– Introduction

– Examples

– Equivalence to Default Logic

• Computing Answer Sets

– smodels

– dlv

– assat, cmodels, noMoRe

• Smodels Example

CSC2542 ASP Lecture – April, 2006

Encoding a Problem

Answer Set generation follows a generate-and-test strategy.

To encode a problem as an ASP
• Write a group of rules whose answer sets would correspond to

candidate solutions (generators)
• Add a second group of rules, mainly consisting of integrity constraints

(rules of the form Ll+1,…,Lm,not Lm+1,…,not Ln) that eliminate
candidates representing invalid solutions (testers)

CSC2542 ASP Lecture – April, 2006

Encoding a Problem

Answer Set generation follows a generate-and-test strategy.

To encode a problem as an ASP
• Write a group of rules whose answer sets would correspond to

candidate solutions (generators)
• Add a second group of rules, mainly consisting of integrity constraints

(rules of the form Ll+1,…,Lm,not Lm+1,…,not Ln) that eliminate
candidates representing invalid solutions (testers)

In addition to logic programming, there are a number of ASP language
extensions allowing: classical negation, disjunctive logic programs,
nested logic programs, cardinality constraints, preferences, rule
preferences, ordered disjunction, aggregate functions, etc.

CSC2542 ASP Lecture – April, 2006

ASP Systems
There are a number of “ASP systems”:

• smodels (Simons, Niemela, Soininen et al.)
• dlv (Leone, Faver, Eiter, Gottlob, Koch, et al.)
• noMoRe (Linke)
• assat (Lin, Zhou et al.)
• cmodels (Lifschitz et al.)

In order to deal with programs containing variables, the systems rely on a
two phase implementation consisting of:

1. Grounding to eliminate variables (and to deal with extensions)
2. Computation of answer sets for propositional programs

The “ASP systems” predominantly refer to the 2nd phase of computation.
Most ASPs use a program called lparse to do the grounding.

CSC2542 ASP Lecture – April, 2006

ASP Systems

To compute answer sets, most of these systems use a procedure
similar to DPLL, where a partial model is constructed and refined.
Some editorial comments:

• smodels (first and most popular)
• dlv (also very popular. core similar to smodels. extended for

disjunctive logic programs, negation and aggregates)
• noMoRe (graph based approach, originating in default logic. I know

nothing else about it)
• assat (uses SAT solver. Fast but unfortunately mapping creates a

blow up in the representation. Uses Clark’s completion to deal w/
the closure in the translation)

• cmodels (also uses SAT solver in a similar way)

The relationship between SAT and ASP is a topic of growing interest.

CSC2542 ASP Lecture – April, 2006

Acknowledgements

Thanks to Aarati Pamar for the slides that follow…

CSC2542 ASP Lecture – April, 2006

CSC2542 ASP Lecture – April, 2006

CSC2542 ASP Lecture – April, 2006

CSC2542 ASP Lecture – April, 2006

CSC2542 ASP Lecture – April, 2006

CSC2542 ASP Lecture – April, 2006

CSC2542 ASP Lecture – April, 2006

CSC2542 ASP Lecture – April, 2006

CSC2542 ASP Lecture – April, 2006

Recap
• Origins of ASP

• Quick Review of Logic Programming Semantics

• Answer Set Semantics

– Introduction

– Examples

– Equivalence to Default Logic

• Computing Answer Sets

– smodels

– dlv

– assat, cmodels, noMoRe

• Smodels Example

CSC2542 ASP Lecture – April, 2006

Want to learn more?

There are some excellent resources and references,
including text books, good theoretical papers and well-
documented systems to experiment with. I’ll update the
postings on our Web page to reflect these.

