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Answer Set Programming

Answer Set Programming (ASP) is a form of declarative programming
oriented towards combinatorial problems (i.e., search).

Syntactically: Looks like logic programming
Computationally: Similar to SAT solving

Example Applications:
* plan generation
+ product configuration
» diagnosis
+ default reasoning
» graph theory problems in VLSI

...basically anything where the solutions to the problem can be
characterized as (preferred) models.
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What's so great about ASP?

Effective computational machinery for problem domains that require
combinatorial search together with

— Nonmonotonic reasoning (including closed world assumption,
frame problem, default reasoning, etc.)

— Reasoning with incomplete information
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Approach

Recall thatin SAT .-~

e
A/

/

E.g., plan generation,
product configuration
diagnosis, verification

Problem

propositional
theory

A 4

SAT Solver

The solutions to the problem are the models of the propositional theory.

Similarly in ASP,

Problem

A4

Logic Program

A

ASP Solver

The solutions to the problem are the answer sets of the logic program
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Answer Set Programming

...So what are answer sets
and how do we compute them?

CSC2542 ASP Lecture — April, 2006




Outline

» Origins of ASP
* Quick Review of Logic Programming Semantics
* Answer Set Semantics
— Introduction
— Examples
— Equivalence to Default Logic
» Computing Answer Sets
— smodels
— dlv
— assat, cmodels, noMoRe

* Smodels Example
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Origins of ASP

Proposed in the late 1990s as a new logic programming paradigm.
(e.g., Lifschitz, 1999; Marek and Truszczynski, 1999; Niemela 1999)

Emerged from the interaction of 2 lines of research:
1.  Semantics of negation in logic programming
(l.e., stable model semantics for logic programs
(Gelfond and Lifschitz, 1988))

2.  Application of SAT solvers to search problems
(e.g., Kautz and Selman, 1992)

“Stable Model Semantics” are the same as “Answer Set Semantics”
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Review of Logic Pgming Semantics

L — a first order language with its usual components (e.g., variables,
constants, function symbols, predicate symbols, etc.

U, — Herbrand Universe of the language £ : the set of all ground terms
which can be formed with the functions and constants in £.

B, — Herbrand Base of a language £ : the set of all ground atom which
can be formed with the functions, constants and predicates in £.

E.g., consider a language £, with variables X,Y; constants a,b; function
symbol f of arity 1; and predicate symbol p of arity 1.

U,, = {a.b,f(a) f(b).f(f(a)).f(f(b)).f(f(f(a))).f(f(f(b)))....}
B, = {p(a),p(b).p(f(a)),p(f(b)),p(f(f(a)),p(f(f(b))),p(f(f(f(a))), ...}

A Herbrand Interpretation of a logic program P is a set of atoms from its
Herbrand Base.

The Least Herbrand Model of a program P is called the minimal model
of P.
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Logic Programming Semantics (cont)

Definite logic programs, having rules of the form (no not’s in the body):
R,: L« L,,,., L

1

have a unique intended Herbrand model — the least Herbrand model.

m.
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Logic Programming Semantics (cont)

Unfortunately, when you add negation, things get complicated.
General (aka) Normal logic programs have rules of the form

R,: L« L,,,.,L,,not L _,,,..,not L,

1

where the not is negation as failure (Clark, 1978);(Reiter, 1978))
» Usually there is no unique least Herbrand model.
* Choosing a single intended model is difficult.
* Logic programming schism:
1. Single intended model approach, e.g.,
+ Perfect semantics of stratified programs
+ 3-valued well-founded semantics for (arbitrary) programs.
2. Multiple preferred model approach, e.g.,
» Stable model semantics (aka answer set semantics)
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Answer Set Semantics

Intuitively,
An answer set is the minimal set of atoms (using set inclusion)
that satisfies a set of prolog-style rules.

R;: L;;.;L./not L.,,;/..;not L; <«
L,y,.,L,,not L ,,,..,not L
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Answer Set Semantics

Intuitively,
An answer set is the minimal set of atoms (using set inclusion)
that satisfies a set of prolog-style rules.

R;: L,;.;L,,not L.,,;;.;not L; <«
L,/ Ly,not L ,,..,not L,

Satisfaction of the rules is defined in terms of the concept of reducts of
the rules — transformations of the rules {R; }that are used to check if an

answer set M satisfies {R; }. (Gelfond and Lifschitz, 1988).

Intuitively, a literal is only in the answer set if it is justified by a rule in the
program P.
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Answer Set Semantics — Definite Programs

If there is no negation (no nots), the definition of an answer set is easy.
Given, rules of the form:

R;: L;;.;L <« L, ,,., L,

Mis an answer set when for each R;,

ifallof L, ,, , ..., L arein M, then at leastone of L., , ..., L, isinM,
and M is the minimal such set (under set inclusion).

Another way to think about this is that every literal in the answer set has
to have a reason to be in M.

The answer set of a definite program P is the smallest subset M of the
Herbrand Base such that forany rule ., « =, , ., . fromPif1, ., 1 is
inM then L, isin M.
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Answer Set Semantics - Normal Logic Programs

Now let’s add negation. For normal logic programs, given
P = {R;} — a propositional normal logic program
R;: L« L,,..,L ,not L ,..,not L,

M — set of atoms (which are the potential answer set)

Reduct P* (aka {R,} ") is a definite program constructed as follows:
- For each atom L. € M, remove rules with not L in the body
- Remove literals not L from all other rules

M is an answer set of P if M is a least model of the reduct.

Again, intuitively, a literal is only in the answer set if it is justified by a
rule in the program P.
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Answer Set Semantics — The General Case

In the most general case,if there is negation in the head and body of the
rules, and disjunction in the head, i.e., if rules are of the form:

R;: L;;..;L./not L.,;;/..;not L; <«
L,,y,..,L,,not L_,,,..,not L

Take the reduct {Ri}M e,

. take the set of rules where all of L, ,, , ..., L; areinM
andnoneofL_.,,..,L_are.

. remove not L _.,,..,not L_ from all remaining rules.

Resulting rules in the reduct will be of the form:
R,": L;;.;Lg<« L;,,,.., L

m

Mis an answer set for {R.} iffitis for {R,}"
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Reduct Intuition (Gelfond)

Take a set of literals M. For each rule R; of the form:
R;: L;;.;L./not L.,,/.;not L; <«

1

L,,y,.,L,,not L ,,,..,not L

Either at least one of the L._,, , ..., L isin M, or none are.

. If at least one ofthe L_,, ,..., L isin M then the rule can'’t

possibly fire, so we throw it out of the reduct.

. Ifnoneof L, ,.., L, isinM then the rule is equivalent to

n

R;”: L;;.;Lgnot Ly ,,;.;not L; « L, ,,. L,
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Reduct Intuition (continued)

Continuing with a subset of the rules of the form:
R;”: L;;.;L.not L, ,,;.;not L; «< L, ,,. L,

. If at least one of the Ly, , ..., L; is missing from M then the rule is
automatically satisfied, so we throw it out of the reduct.

. If all of the Ly, , ..., L; areinM then the rule is still not satisfied,
and we can write it as:

R;”: Ly;.;Lg <« Ly,,,.., L,

The intuition is that if M still satisfies {Ri}M after these transformations,
then it should satisfy {R; } -
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Answer Set Semantics

Let Cn(P") denote the smallest set of atoms that is closed under the reduct
P A set M of atoms is an answer set (aka stable model) of a
program P iff Cn(P")= M.

l.e., an answer set is closed under the rules of P, and it is grounded in P,
that is, each of its atoms has a derivation using applicable rules from P.
Answer set was originally called stable model because it was indeed
“stable”.

Obviously we can have many answer sets. As with SAT problem
encodings, these models correspond to different solutions to a problem
(e.g., different plans, different diagnoses, etc.), and again as with SAT, P
entails a formula fif fis true in all answer set of P.

So for query answering, the answer to the ground query q is
* yes if qis true in all answer sets of P
* noif—qis true in all answer sets of P and

« unknown otherwise.
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Example 1

An easy first example with no negation in the body.

p,9. (1)
-r < p. (2)

Either p or g has to be in M, yielding the following candidate answer sets:

{ptia h{p a}

Then rule (2) fires p so we must include -r, yielding
{p, ri{alhip a, -r}

Applying the minimality criterion yields two answer sets:
{p.,-r}and {q}
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Example 2

A second example:

p_next « p, not p next’. (1)
p_next’ <« p’, not p next. (2)
< p,p’ - (3)
< p_next,p next’. (4)
PP’ . (5)

No matter what M we choose, (3) - (5) will be in the reduct.
(5) tells us we need an answer set for both p and p’ but not together
since (3) tells us they are mutually exclusive, as are p_next,p next’.
So the candidate answer sets are:

{p }{p’ }.{ P, p_next}, { p’, p_next},

{ p,p_next’},{ p’, p_next’}.
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Example 2 (continued)

Now let’'s compute the reducts for each candidate M.

p_next « p, not p next’. (1)
p_next’ < p’, not p next. (2)
< p,p’ . (3)
< p_next,p next’. (4)
p,p’. (5)
={p}
={p’ }
{ P, p_next}

{ p’, p_next}
{ p, p_next’}
{ p’', p_next’ }-

B RRRRR
I
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Example 2 (continued)

Now let's compute the reducts for each candidate M.

p_next « p, not p next’. (1)
p_next’ < p’, not p next. (2)
< p,p’ . (3)
< p_next,p next’. (4)
PP’ . (5)

{p } {Ri}"= {p next « p.,p next’ « p’.,(3),(4),(5).}
{p’ }{Ri}"= {p next « p.,p next’ « p’.,(3),(4),(5) .}
{ p, p_next} {Ri}"= {p next « p.,(3),(4),(5) .}

{ p’, p_next} {Ri}"= {p next « p.,(3),(4),(5).}

{ p, p next’} {Ri}"= {p next’ « p’.,(3),(4),(5).}

{ p’, p_next’'}. {Ri}"= {p next’ « p’.,(3),(4),(5).}

B RRRRR
I
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Example 2 (continued)

Now let’'s compute the reducts for each candidate M.

p_next « p, not p next’. (1)
p_next’ < p’, not p next. (2)
< p,p. (3)
< p_next,p next’. (4)
p,p’. (5)
L A St AR Tt S s e S

e ;{K]_‘}'ME {P_uEzu. = P PIEeXt o r St

U ={ p, p nextlD {Ri}*= {p next « p.,(3),(4),(5).}
D { P’ ” % M_ —

L i e R - e B S A A

14 s YM__ y 14 yi
M={p,p nexE). {Ri}"= {p next’ « p’.,(3),(4),(5).}
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Equivalence to Default Logic

Recall default logic statements of the form
Li,..;L. ¢ = L,i,.,— L (1)
LO
State thatif .., , ..., L are true
and we can consistently assume - L_,,,..,- L, theninfer L,
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Equivalence to Default Logic

Recall default logic statements of the form
Ly, Ly 2 = Loy, — Lo (1)
LO
State thatif .., ..., L are true
and we can consistently assume - L_,,,..,- L, theninfer L,

(1) is equivalent to the answer set of
R: Ly« L,;,..,L ,not L ,,..,not L,
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Equivalence to Default Logic

Recall default logic statements of the form
Li,..;L. ¢ = L,i,.,— L (1)
LO
State thatif .., , ..., L are true
and we can consistently assume - L_,,,..,- L, theninfer L,

(1) is equivalent to the answer set of

R: Ly« L;,..,L ,not L ,,..,not L,
This makes intuitive sense: M is an answer set of R if M lacks
L,..,,L, andincludes L, ,..,L_and L.
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Equivalence to Default Logic

Recall default logic statements of the form
Ly, Ly 2 = Loy, — Lo (1)
LO
State thatif .., ..., L are true
and we can consistently assume - L_,,,..,- L, theninfer L,

(1) is equivalent to the answer set of

R: Ly« L,;,..,L ,not L ,,..,not L,
This makes intuitive sense: M is an answer set of R if M lacks
L...,,L, andincludes L, ,..,L_and L.
More formally
M is an answer set of {R, }iff the deductive closure of M
is a consistent extension of the equivalent default theory.
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Equivalence to Default Logic (cont.)

Example 2 can be interpreted as a default theory by replacing pred’ by

-pred.

Answer Set Pgm Default Theory
p_next < p, not p next’. p : p_next
p_next’ « p’, not p next. p_next

<P -p : -p next
< p_next,p next’. p—l;_nle);t
P/’ PV -P

Notice that this is just the commonsense law of inertia for p.
Extensions: {p ,p next } and {-p,-p_next }
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Outline

v" Origins of ASP
v Quick Review of Logic Programming Semantics
v Answer Set Semantics
— Introduction
— Examples
— Equivalence to Default Logic
» Computing Answer Sets
— smodels
— dlv
— assat, cmodels, noMoRe

* Smodels Example
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Encoding a Problem

Answer Set generation follows a generate-and-test strategy.

To encode a problem as an ASP

Write a group of rules whose answer sets would correspond to
candidate solutions (generators)

Add a second group of rules, mainly consisting of integrity constraints
(rules of the form « ©,,,,..,L ,not L_,,,..,not L_)thateliminate

4 m/

candidates representing invalid solutions (testers)

CSC2542 ASP Lecture — April, 2006

Encoding a Problem

Answer Set generation follows a generate-and-test strategy.

To encode a problem as an ASP

Write a group of rules whose answer sets would correspond to
candidate solutions (generators)

Add a second group of rules, mainly consisting of integrity constraints
(rules of the form «~ ©,,,,..,L ,not L_,,,..,not L_)thateliminate

4 m/

candidates representing invalid solutions (testers)

In addition to logic programming, there are a number of ASP language

extensions allowing: classical negation, disjunctive logic programs,
nested logic programs, cardinality constraints, preferences, rule
preferences, ordered disjunction, aggregate functions, etc.
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ASP Systems

There are a number of “ASP systems”:
. smodels (Simons, Niemela, Soininen et al.)
. dlv (Leone, Faver, Eiter, Gottlob, Koch, et al.)
. noMoRe (Linke)
. assat (Lin, Zhou et al.)
. cmodels (Lifschitz et al.)

In order to deal with programs containing variables, the systems rely on a
two phase implementation consisting of:

1. Grounding to eliminate variables (and to deal with extensions)

2. Computation of answer sets for propositional programs

The “ASP systems” predominantly refer to the 2" phase of computation.
Most ASPs use a program called Iparse to do the grounding.
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ASP Systems

To compute answer sets, most of these systems use a procedure
similar to DPLL, where a partial model is constructed and refined.
Some editorial comments:

» smodels (first and most popular)

 dlv (also very popular. core similar to smodels. extended for
disjunctive logic programs, negation and aggregates)

* noMoRe (graph based approach, originating in default logic. | know
nothing else about it)

» assat (uses SAT solver. Fast but unfortunately mapping creates a
blow up in the representation. Uses Clark’s completion to deal w/
the closure in the translation)

» cmodels (also uses SAT solver in a similar way)

The relationship between SAT and ASP is a topic of growing interest.
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Lparse & Smodels

Lparse: program that takes in a Prg.\--d@ program,
which does allow predicates and functions, along
with some other bells and whistles. |t outputs a
totally grounded (propositionalized) theory.
Found at:

smodels: receives the grounded theory, finds the
answer sets. Found at:

Slide W /£ 20




Smodels

I Takes in grounded output of \parse, returns as
many answers set as you like.

H Stable model semantics
§ Handles:

I constraint rules,
I choice rules,
I weight rules, and

i optimize statements.

Slide 9 7 20

DLV (Datalog w Disjunction)

[] Unlike lparse+smodels, does handle true naga’rion
B Also disjunction (in head):

color ({X,red) v color (¥X,green) v color(X,blue) :- node(X).

§ Arithmetic relations, limited arithmetic functions
§ Constants

B Support for brave vs. cautious reasoning,
planning, diagnosis, SQL3, prioritized logic
programs.,
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Example: B\ockswor_ld (Lifsqhiiz)

const grippers==:.
const lasttime=3.

block(l..6). : ;2,lasttime) .
8 ,1,lasttime) .
, table, lagttime) .
, 0, lasttime) .
4, lasttime) .
, table, lasttime) .

on(l,2,0).
on(z, takle, ).
on(3,4,0).
on(d, takle, D).
on(d,&6,0).
on(6, takle, D).
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Example: B\ockswor_ld (Lifsqhiiz)

time (0..lazsttime) .

location(B) :- kblock(B).
location(takle).

{move (B,L,T) : klock(B) : location(L)} grippers :- time(T),
T<lasttime.

on(B,L,T+1) :- move(B,L,T), block(B), location(L), time(T),
T<lasttime.

on(B,L,T+1) :- on(B,L,T), not on'"(B,L,T+1), location(L),
block(B), time(T), T<lasttime.

Slide 22 1 20




Example: B\ockswor_ld (Lifsqhiiz)

on' (B,L1,T) :- on(B,L,T), L!=L1, klock(B), locationiL),
location(Ll), time(T).

on(B,L,T), on"(B,L,T), block(B), location(L), time(T).
2 {on(Bl,B,T) : klock(Bl)}, block(B), time(T).

move (B, L, T), oni(Bl,B,T), klock(B), klock(Bl), location(L),
time(T), T<lasttime.

move (B,B1l,T), move(Bl,L,T), block(B), klock(Bl),
location(L), time(T), T<lasttime.
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Example: B\ockswor_ld (Lifsqhiiz)

smodels wversion 2.25. Reading...done

Answer: 1

Stakble Model: move(l, table,0) move(3, table, D) move(2,1,1)
move (9,4,1) move(3,2,2) move(b,5,2)

False

Duration: 0.150

Number of choice points: O
Number of wrong choices: 0O
Number of atom=: 507
Number of rules: 3026
Number of picked atoms: 24
Number of forced atoms: 13

Number of truth assigmments: 944
Size of searchspace (removed): 0O (0)
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Example: Some Points

A different way fo program action theories - - allow all
actions, but then restrict models via constraints.
(Qualification, ramification problems)

CWA, UNA automatically taken care of via grounding.

Negation as failure semantics allows solution 1o frame
prob\em.

Difference between p. (Assertion) and :- not p.

(Filter)
Semantics well understood and SIMPLE!
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Recap

» Origins of ASP
* Quick Review of Logic Programming Semantics
* Answer Set Semantics
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» Computing Answer Sets
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— assat, cmodels, noMoRe

* Smodels Example
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Want to learn more?

There are some excellent resources and references,
including text books, good theoretical papers and well-
documented systems to experiment with. I'll update the
postings on our Web page to reflect these.
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