
AnOverview of Tableau Algorithms for Description Logics �

Franz Baader (baader@cs.rwth-aachen.de) and Ulrike Sattler
(sattler@cs.rwth-aachen.de)
LuFG Theoretical Computer Science, RWTH Aachen, Germany

May 19, 2000

Abstract. Description logics are a family of knowledge representation formalisms that are de-
scended from semantic networks and frames via the system KL-ONE. During the last decade,
it has been shown that the important reasoning problems (like subsumption and satisfiability)
in a great variety of description logics can be decided using tableau-like algorithms. This is not
very surprising since description logics have turned out to be closely related to propositional
modal logics and logics of programs (such as propositional dynamic logic), for which tableau
procedures have been quite successful.

Nevertheless, due to different underlying intuitions and applications, most description
logics differ significantly from run-of-the-mill modal and program logics. Consequently, the
research on tableau algorithms in description logics led to new techniques and results, which
are, however, also of interest for modal logicians. In this article, we will focus on three features
that play an important rôle in description logics (number restrictions, terminological axioms,
and role constructors), and show how they can be taken into account by tableau algorithms.

Keywords: Description Logics, Tableau Algorithms

1. Introduction

Description logics (DLs) are a family of knowledge representation languages
which can be used to represent the terminological knowledge of an appli-
cation domain in a structured and formally well-understood way. The name
description logics is motivated by the fact that, on the one hand, the important
notions of the domain are described by concept descriptions, i.e., expres-
sions that are built from atomic concepts (unary predicates) and atomic roles
(binary predicates) using the concept and role constructors provided by the
particular DL. On the other hand, DLs differ from their predecessors, such
as semantic networks and frames (Quillian, 1967; Minsky, 1981), in that they
are equipped with a formal, logic-based semantics, which can, e.g., be given
by a translation into first-order predicate logic.
Knowledge representation systems based on description logics (DL sys-

tems) provide their users with various inference capabilities that deduce im-
plicit knowledge from the explicitly represented knowledge. For instance,
the subsumption algorithm allows one to determine subconcept-superconcept
relationships: � is subsumed by � iff all instances of � are also instances
� This is an extended version of a paper published in the proceedings of Tableaux 2000

(Baader and Sattler, 2000).

c� 2001 Kluwer Academic Publishers. Printed in the Netherlands.

studia--final-complete.tex; 14/08/2001; 13:30; p.1

2 Franz Baader and Ulrike Sattler

of �, i.e., the first description is always interpreted as a subset of the second
description. In order to ensure a reasonable and predictable behaviour of a DL
system, the subsumption problem for the DL employed by the system should
at least be decidable, and preferably of low complexity. Consequently, the
expressive power of the DL in question must be restricted in an appropriate
way. If the imposed restrictions are too severe, however, then the important
notions of the application domain can no longer be expressed. Investigating
this trade-off between the expressivity of DLs and the complexity of their
inference problems has been one of the most important issues in DL research.
Roughly, the research related to this issue can be classified into the following
four phases.

Phase 1: First system implementations. The original KL-ONE system (Brach-
man and Schmolze, 1985) as well as its early successor systems (such as
BACK (Peltason, 1991), K-REP (Mays et al., 1991), and LOOM (MacGregor,
1991)) employ so-called structural subsumption algorithms, which first nor-
malise the concept descriptions, and then recursively compare the syntactic
structure of the normalised descriptions (see, e.g., (Nebel, 1990a) for the de-
scription of such an algorithm). These algorithms are usually very efficient
(polynomial), but they have the disadvantage that they are complete only for
very inexpressive DLs, i.e., for more expressive DLs they cannot detect all
the existing subsumption relationships (though this fact was not necessarily
known to the designers of the early systems).

Phase 2: First complexity and undecidability results. Partially in parallel
with the first phase, the first formal investigations of the subsumption prob-
lem in DLs were carried out. It turned out that (under the assumption � ��
��) already quite inexpressive DLs cannot have polynomial subsumption
algorithms (Brachman and Levesque, 1984; Nebel, 1990b), and that the DL
used by the KL-ONE system even has an undecidable subsumption problem
(Schmidt-Schauß, 1989). In particular, these results showed the incomplete-
ness of the (polynomial) structural subsumption algorithms. One reaction to
these results (e.g., by the designers of BACK and LOOM) was to call the
incompleteness of the subsumption algorithm a feature rather than a bug of
a DL system. The designers of the CLASSIC system (Patel-Schneider et al.,
1991; Brachman, 1992) followed another approach: they carefully chose a re-
stricted DL that still allowed for an (almost1) complete polynomial structural
subsumption algorithm (Borgida and Patel-Schneider, 1994).

Phase 3: Tableau algorithms for expressive DLs and thorough complexity
analysis. For expressive DLs (in particular, DLs allowing for disjunction
and/or negation), for which the structural approach does not lead to com-
plete subsumption algorithms, tableau algorithms have turned out to be quite

1 The incompleteness is caused by individuals introduced by the one-of constructor;
however, the algorithm is complete w.r.t. a non-standard semantics.

studia--final-complete.tex; 14/08/2001; 13:30; p.2

Tableau Algorithms for Description Logics 3

useful: they are complete and often of optimal (worst-case) complexity. The
first such algorithm was proposed by Schmidt-Schauß and Smolka (1991)
for a DL that they called ��� (for “attributive concept description language
with complements”).2 It quickly turned out that this approach for deciding
subsumption can be extended to various other DLs (Hollunder et al., 1990;
Hollunder and Baader, 1991; Baader and Hanschke, 1991; Baader, 1991;
Hanschke, 1992) and also to other inference problems such as the instance
problem (Hollunder, 1990). Early on, DL researchers started to call the algo-
rithms obtained this way “tableau-based algorithms” since they observed that
the original algorithm by Schmidt-Schauß and Smolka for ���, as well as
subsequent algorithms for more expressive DLs, could be seen as specialisa-
tions of the tableau calculus for first-order predicate logic (the main problem
to solve was to find a specialisation that always terminates, and thus yields
a decision procedure). After Schild (1991) showed that ��� is a syntactic
variant of multi-modal K, it turned out that the algorithm by Schmidt-Schauß
and Smolka was actually a re-invention of the known tableau algorithm for
K.
At the same time, the (worst-case) complexity of various DLs (in partic-

ular also DLs that are not propositionally closed) was investigated in detail
(Donini et al., 1991a; Donini et al., 1991b; Donini et al., 1992).
The first DL systems employing tableau algorithms (KRIS (Baader and

Hollunder, 1991) and CRACK (Bresciani et al., 1995)) demonstrated that (in
spite of their high worst-case complexity) these algorithms lead to acceptable
behaviour in practice (Baader et al., 1994). Highly optimised systems such as
FaCT (Horrocks, 1998b), DLP (Patel-Schneider, 1999), and Race (Haarslev
and Möller, 1999) have an even better behaviour, also for benchmark prob-
lems in modal logics (Horrocks, 1998a; Horrocks and Patel-Schneider, 1999;
Haarslev and Möller, 2000a; Horrocks, 2000; Patel-Schneider, 2000).

Phase 4: Algorithms and efficient systems for very expressive DLs. Moti-
vated by applications (e.g., in the database area), DL researchers started to
investigate DLs whose expressive power goes far beyond the one of ���
(e.g., DLs that do not have the finite model property). First decidability and
complexity results for such DLs could be obtained from the connection be-
tween propositional dynamic logic (PDL) and DLs (Schild, 1991). The idea
of this approach, which was perfected by De Giacomo and Lenzerini, is to
translate the DL in question into PDL. If the translation is polynomial and
preserves satisfiability, then the known EXPTIME-algorithms for PDL can be
employed to decide subsumption in exponential time. Though this approach
has produced very strong complexity results (De Giacomo and Lenzerini,

2 Actually, at that time the authors were not aware of the close connection between their
rule-based algorithm working on constraint systems and tableau procedures for modal and
first-order predicate logics.

studia--final-complete.tex; 14/08/2001; 13:30; p.3

4 Franz Baader and Ulrike Sattler

1994; De Giacomo, 1995; De Giacomo and Lenzerini, 1996), it turned out
to be less satisfactory from a practical point of view. In fact, first tests in a
database application (Horrocks et al., 1999) showed that the PDL formulae
obtained by the translation technique could not be handled by existing effi-
cient implementations of satisfiability algorithms for PDL (Patel-Schneider,
1999). To overcome this problem, DL researchers have started to design
“practical” tableau algorithms for very expressive DLs (Horrocks and Sattler,
1999; Horrocks et al., 1999).3

The purpose of this article is to give an impression of the work on tableau
algorithms done in the DL community, with an emphasis on features that,
though they may also occur in modal logics, are of special interest to descrip-
tion logics. After introducing some basic notions of description logics in Sec-
tion 2, we will describe a tableau algorithm for ��� in Section 3. Although,
from the modal logic point of view, this is just the well-known algorithm for
multi-modal K, this section will introduce the notations and techniques used
in description logics, and thus set the stage for extensions to more interesting
DLs. In the subsequent three sections we will show how the basic algorithm
can be extended to one that treats number restrictions, terminological axioms,
and role constructors of different expressiveness, respectively.
An overview of reasoning techniques in description logics with more em-

phasis on complexity results and on results for less expressive DLs can be
found in (Donini et al., 1996). Reasoning in very expressive DLs with an em-
phasis on results obtained via the translation approach is treated in (Calvanese
et al., 2001).

2. Description logics: basic definitions

The main expressive means of description logics are so-called concept de-
scriptions, which describe sets of individuals or objects. Formally, concept
descriptions are inductively defined with the help of a set of concept construc-
tors, starting with a set�� of concept names and a set�� of role names. The
available constructors determine the expressive power of the DL in question.
In the next two sections, we consider concept descriptions built from the
constructors shown in Table I, where ��� stand for concept descriptions, �
for a role name, and � for a nonnegative integer. In the description logic���,
concept descriptions are formed using the constructors negation, conjunction,
disjunction, value restriction, and existential restriction. The description logic
���� additionally provides us with (qualified) at-least and at-most number
restrictions.

3 In contrast to PDL, these DLs allow for transitive roles, but not for the transitive closure
operator.

studia--final-complete.tex; 14/08/2001; 13:30; p.4

Tableau Algorithms for Description Logics 5

Table I. Syntax and semantics of concept descriptions.

Constructor Syntax Semantics

negation �� �� � ��

conjunction � �� �� ���

disjunction � �� �� ���

existential
restriction

���� 	�
 �� � �� � ��� ��
 �� � �
 ��

value
restriction

���� 	�
 �� � �� � ��� ��
 �� � �
 ��

at-least
restriction

������� 	�
 �� � �	�
 �� � ��� ��
 �� � �
 �� � �

at-most
restriction

������� 	�
 �� � �	�
 �� � ��� ��
 �� � �
 �� � �

The semantics of concept descriptions is defined in terms of an interpre-
tation � � ��� � ���. The domain �� of � is a non-empty set of individuals
and the interpretation function �� maps each concept name � � �� to a set
� � 	 �� and each role name � � �� to a binary relation �� 	 ��
�� .
The extension of �� to arbitrary concept descriptions is inductively defined,
as shown in the third column of Table I.
From the modal logic point of view, roles are simply names for acces-

sibility relations, and existential (value) restrictions correspond to diamonds
(boxes) indexed by the respective accessibility relation. Thus, any ��� de-
scription can be translated into a multi-modal � formula and vice versa.
For example, the description � � ���� � ���� corresponds to the for-
mula 	 � ���	 � ����	, where 	 is an atomic proposition corresponding to
the concept name � . As pointed out by Schild (1991), there is an obvious
correspondence between the semantics of ��� and the Kripke semantics for
multi-modal K, which satisfies
 � �� iff the world
 satisfies the formula
�� corresponding to � in the Kripke structure corresponding to � . Number
restrictions also have a corresponding construct in modal logics, so-called
graded modalities (Van der Hoek and De Rijke, 1995), which are, however,
not as well-investigated as the modal logic K.
One of the most important inference services of DL systems is computing

the subsumption hierarchy of a given finite set of concept descriptions.

DEFINITION 1. The concept description � subsumes the concept descrip-
tion� (written � � �) iff �� 	 �� for all interpretations �;� is satisfiable
iff there exists an interpretation � such that �� �� �; and � and � are
equivalent iff � � � and � � � .

studia--final-complete.tex; 14/08/2001; 13:30; p.5

6 Franz Baader and Ulrike Sattler

In the presence of negation, subsumption can obviously be reduced to
satisfiability: � � � iff � � �� is unsatisfiable.4 Vice versa, satisfiability
can be reduced to subsumption: � is satisfiable iff not � � � � �� , where
� is an arbitrary concept name.
Given concept descriptions that define the important notions of an appli-

cation domain, one can then describe a concrete situation with the help of the
assertional formalism of description logics.

DEFINITION 2. Let�� be a set of individual names. AnABox is a finite set
of assertions of the form ���� (concept assertion) or ���� � (role assertion),
where � is a concept description, � a role name, and �� are individual
names.

An interpretation � , which additionally assigns elements �� � �� to
individual names �, is a model of an ABox � iff �� � �� (��� � �� � ��)
holds for all assertions ���� (���� �) in �.

The Abox� is consistent iff it has a model. The individual � is an instance
of the description � w.r.t. � iff �� � �� holds for all models � of �.

Satisfiability (and thus also subsumption) of concept descriptions as well as
the instance problem can be reduced to the consistency problem for ABoxes:
(i) � is satisfiable iff the ABox ������ for some � � �� is consistent; and
(ii) � is an instance of � w.r.t. � iff �� ������� is inconsistent.
Usually, one imposes the unique name assumption on ABoxes, i.e., re-

quires the mapping from individual names to elements of �� to be injective.
Here, we dispense with this requirement since it has no effect for ���,
and for DLs with number restrictions we will explicitly introduce inequality
assertions, which can be used to express the unique name assumption.

3. A tableau algorithm for ���

Given an ���-concept description ��, the tableau algorithm for satisfiabil-
ity tries to construct a finite interpretation � that satisfies ��, i.e., contains
an element �� such that �� � ��

� . Before we can describe the algorithm
more formally, we need to introduce an appropriate data structure in which
to represent (partial descriptions of) finite interpretations. The original pa-
per by Schmidt-Schauß and Smolka (1991), and also many other papers on
tableau algorithms for DLs, introduce the new notion of a constraint system
for this purpose. However, if we look at the information that must be ex-
pressed (namely, the elements of the interpretation, the concept descriptions

4 This was the reason why Schmidt-Schauß and Smolka (1991) introduced a DL with
negation in the first place.

studia--final-complete.tex; 14/08/2001; 13:30; p.6

Tableau Algorithms for Description Logics 7

they belong to, and their role relationships), we see that ABox assertions are
sufficient for this purpose.
It will be convenient to assume that all concept descriptions are in negation

normal form (NNF), i.e., that negation occurs only directly in front of concept
names. Using de Morgan’s rules and the usual rules for quantifiers, any���-
concept description can be transformed (in linear time) into an equivalent
description in NNF.

The��-rule
Condition: � contains ��� � ������, but not both ����� and �����.

Action: �� �� �� 	������ �����.

The��-rule
Condition: � contains ��� � ������, but neither ����� nor �����.

Action: �� �� �� 	�����, ��� �� � � 	�����.

The��-rule
Condition: � contains ���������, but there is no individual name 	 such that

��	� and ���� 	� are in �.

Action: �� �� ��	����� ���� �� where � is an individual name not occurring
in �.

The��-rule
Condition: � contains ��������� and ���� ��, but it does not contain ����.

Action: �� �� �� 	����.

Figure 1. Transformation rules of the satisfiability algorithm for ���.

Let �� be an���-concept in NNF. In order to test satisfiability of ��, the
algorithm starts with �� 	� ��������, and applies consistency preserving
transformation rules (see Fig. 1) to this ABox. The transformation rule that
handles disjunction is nondeterministic in the sense that a given ABox is
transformed into two new ABoxes such that the original ABox is consistent
iff one of the new ABoxes is so. For this reason we will consider finite sets of
ABoxes � � ���� � � � ���� instead of single ABoxes. Such a set is consistent
iff there is some �,
 � � � �, such that �� is consistent. A rule of Fig. 1 is
applied to a given finite set of ABoxes � as follows: it takes an element � of
� , and replaces it by one ABox �� or by two ABoxes �� and ���.

DEFINITION 3. An ABox � is called complete iff none of the transforma-
tion rules of Fig. 1 applies to it. The ABox � contains a clash iff �� ����
�� ���� 	 � for some individual name � and some concept name � . An
ABox is called closed if it contains a clash, and open otherwise.

studia--final-complete.tex; 14/08/2001; 13:30; p.7

8 Franz Baader and Ulrike Sattler

The satisfiability algorithm for ��� works as follows. It starts with the
singleton set of ABoxes ����������, and applies the rules of Fig. 1 (in arbi-
trary order) until no more rules apply. It answers “satisfiable” if the set �� of
ABoxes obtained this way contains an open ABox, and “unsatisfiable” other-
wise. Correctness of this algorithm is an easy consequence of the following
lemma.

LEMMA 1. Let �� be an ���-concept in negation normal form.

1. There cannot be an infinite sequence of rule applications

���������� � �� � �� � � � � �

2. Assume that � � is obtained from the finite set of ABoxes � by application
of a transformation rule. Then � is consistent iff � � is consistent.

3. Any closed ABox� is inconsistent.

4. Any complete and open ABox � is consistent.

The first part of this lemma (termination) is an easy consequence of the facts
that (i) all concept assertions occurring in an ABox in one of the sets �� are
of the form ���� were � is a sub-description of ��; and (ii) if an ABox
in �� contains the role assertion ���� ��, then the maximal role depth (i.e.,
nesting of value and existential restrictions) of concept descriptions occurring
in concept assertions for � is strictly smaller than the maximal role depth of
concept descriptions occurring in concept assertions for �. A detailed proof
of termination (using an explicit mapping into a well-founded ordering) for
a set of rules extending the one of Fig. 1 can, e.g., be found in (Baader and
Hanschke, 1991).
The second and third part of the lemma are quite obvious, and the fourth

part can be proved by defining the canonical interpretation �� of �:

1. The domain ��� of �� consists of the individual names occurring in �.

2. For all concept names � we define � �� 	� �� � � ��� � ��.

3. For all role names � we define ��� 	� ���� �� � ���� �� � ��.

By definition, �� satisfies all the role assertions in �. By induction on the
structure of concept descriptions, it is easy to show that it satisfies the concept
assertions as well, provided that � is complete and open.
It is also easy to show that the canonical interpretation has the shape of

a finite tree whose depth is linearly bounded by the size of �� and whose
branching factor is bounded by the number of different existential restric-
tions in ��. Consequently, ��� has the finite tree model property, i.e., any

studia--final-complete.tex; 14/08/2001; 13:30; p.8

Tableau Algorithms for Description Logics 9

satisfiable concept �� is satisfiable in a finite interpretation � that has the
shape of a tree whose root belongs to ��.
To sum up, we have seen that the transformation rules of Fig. 1 reduce

satisfiability of an ���-concept �� (in NNF) to consistency of a finite set ��
of complete ABoxes. In addition, consistency of �� can be decided by looking
for obvious contradictions (clashes).

THEOREM 1. It is decidable whether or not an ���-concept is satisfiable.

3.1. COMPLEXITY ISSUES

The satisfiability algorithm for ��� presented above may need exponential
time and space. In fact, the size of the complete and open ABox (and thus
of the canonical interpretation) built by the algorithm may be exponential in
the size of the concept description. For example, consider the descriptions ��

�� �
� that are inductively defined as follows:

�� 	� ���� � �����

���� 	� ���� � ���� � �����

Obviously, the size of �� grows linearly in �. However, given the input de-
scription ��, the satisfiability algorithm generates a complete and open ABox
whose canonical interpretation is a binary tree of depth �, and thus consists
of ���� �
 individuals.
Nevertheless, the algorithm can be modified such that it needs only poly-

nomial space. The main reason is that different branches of the tree model to
be generated by the algorithm can be investigated separately, and thus the tree
can be built and searched in a depth-first manner. Since the complexity class
NPSPACE coincides with PSPACE (Savitch, 1970), it is sufficient to describe
a nondeterministic algorithm using only polynomial space, i.e., for the non-
deterministic��-rule, we may simply assume that the algorithm chooses the
correct alternative. In principle, the modified algorithm works as follows: it
starts with �������� and

1. applies the��- and��-rules as long as possible and checks for clashes;

2. generates all the necessary direct successors of �� using the��-rule and
exhaustively applies the��-rule to the corresponding role assertions;

3. successively handles the successors in the same way.

Since the successors of a given individual can be treated separately, the algo-
rithm needs to store only one path of the tree model to be generated, together
with the direct successors of the individuals on this path and the information
which of these successors must be investigated next. Since the length of the

studia--final-complete.tex; 14/08/2001; 13:30; p.9

10 Franz Baader and Ulrike Sattler

path is linear in the size of the input description ��, and the number of suc-
cessors is bounded by the number of different existential restrictions in ��,
the necessary information can obviously be stored within polynomial space.
This shows that the satisfiability problem for���-concept descriptions is

in PSPACE. PSPACE-hardness can be shown by a reduction from validity of
Quantified Boolean Formulae (Schmidt-Schauß and Smolka, 1991; Halpern
and Moses, 1992).

THEOREM 2. Satisfiability of���-concept descriptions is PSPACE-comp-
lete.

3.2. THE CONSISTENCY PROBLEM FOR ���-ABOXES

The satisfiability algorithm described above can also be used to decide con-
sistency of ���-ABoxes. Let �� be an ���-ABox such that (w.l.o.g.) all
concept descriptions in�� are in NNF. To test�� for consistency, we simply
apply the rules of Fig. 1 to the singleton set ����. It is easy to show that
Lemma 1 still holds. Indeed, the only point that needs additional considera-
tion is the first one (termination). Thus, the rules of Fig. 1 yield a decision
procedure for consistency of ���-ABoxes.
Since now the canonical interpretation obtained from a complete and open

ABox need no longer be of tree shape, the argument used to show that the sat-
isfiability problem is in PSPACE cannot directly be applied to the consistency
problem. In order to show that the consistency problem is in PSPACE, one
can, however, proceed as follows: In a pre-completion step, one applies the
transformation rules only to old individuals (i.e., individuals present in the
original ABox ��). Subsequently, one can forget about the role assertions,
i.e., for each individual name in the pre-completed ABox, the satisfiability al-
gorithm is applied to the conjunction of its concept assertions (see (Hollunder,
1996) for details).

THEOREM 3. Consistency of ���-ABoxes is PSPACE-complete.

Since ��� is closed under negation, this also implies that the instance
problem is PSPACE-complete in ���. The consistency and the instance
problem for DLs not allowing for negation has been investigated in (Schaerf,
1993; Donini et al., 1994).

4. Number restrictions

Before treating the qualified number restrictions introduced in Section 2, we
consider a restricted form of number restrictions, which is the form present

studia--final-complete.tex; 14/08/2001; 13:30; p.10

Tableau Algorithms for Description Logics 11

in most DL systems. In unqualified number restrictions, the qualifying con-
cept is the top concept �, where � is an abbreviation for � � �� , i.e., a
concept that is always interpreted by the whole interpretation domain. In-
stead of ������� and �������, we write unqualified number restrictions
simply as ����� and �����. The DL that extends ��� by unqualified num-
ber restrictions is denoted by ���� (Hollunder et al., 1990; Donini et al.,
1991a).
Obviously, ���� - and ����-concept descriptions can also be trans-

formed into NNF in linear time.

4.1. A TABLEAU ALGORITHM FOR ����

The main idea underlying the extension of the tableau algorithm for ���
to ���� is quite simple. At-least restrictions are treated by generating the
required role successors as new individuals. At-most restrictions that are cur-
rently violated are treated by (nondeterministically) identifying some of the
role successors. To avoid running into a generate-identify cycle, we introduce
explicit inequality assertions that prohibit the identification of individuals that
were introduced to satisfy an at-least restriction.

Inequality assertions are of the form � �
�
� � for individual names �� �, with

the obvious semantics that an interpretation � satisfies � �
�
� � iff �� �� �� .

These assertions are assumed to be symmetric, i.e., saying that � �
�
� � belongs

to an ABox� is the same as saying that � � �� � belongs to �.
The satisfiability algorithm for ���� is obtained from the one for ���

by adding the rules in Fig. 2, and by considering a second type of clashes:

� ���������� � ����� ��� �
 � � � � �
� � ��� �
�
� �� �
 � � �

� � ��
� 	 � for �� ��� � � � � ���� � �� , � � ��, and a nonnegative
integer �.

The nondeterministic ��-rule replaces the ABox � by finitely many new
ABoxes���� . Lemma 1 still holds for the extended algorithm (see e.g. (Baader
and Sattler, 1999), where this is proved for a more expressive DL). This shows
that satisfiability (and thus also subsumption) of���� -concept descriptions
is decidable.

4.1.1. Complexity issues
The ideas that lead to a PSPACE algorithm for ��� can be applied to the
extended algorithm as well. The only difference is that, before handling the
successors of an individual (introduced by at-least and existential restric-
tions), one must check for clashes of the second type and generate the neces-
sary identifications. However, this simple extension only leads to a PSPACE
algorithm if we assume the numbers in at-least restrictions to be written in
base
 representation (called unary notation in the following). Here, the size

studia--final-complete.tex; 14/08/2001; 13:30; p.11

12 Franz Baader and Ulrike Sattler

The��-rule
Condition: � contains ��������, and there are no individual names 	�� � � � � 	�

such that ���� 	�� �� �
 � �� and 	� �
�
� 	� �� �
 � � � �� are in �.

Action: �� �� �� 	���� ��� � � �
 � � � 	�� �
�
� �� � � �
 � � � �, where

��� � � � � �� are distinct individual names not occurring in �.

The��-rule
Condition: � contains distinct individual names ��� � � � � ���� such that

�������� and ���� ���� � � � � ���� ����� are in �, and �� �
�
� �� is not in

� for some
� �� � �
 � � � �� �.

Action: For each pair ��� �� such that � �
 � � � � � � and �� �
�
� �� is not

in �, the ABox ���� �� 	����
� is obtained from � by replacing each
occurrence of �� by �� .

Figure 2. The transformation rules handling unqualified number restrictions.

of the representation coincides with the number represented. For bases larger
than
 (e.g., numbers in decimal notation), the number represented may be
exponential in the size of the representation. Thus, we cannot introduce all the
successors required by at-least restrictions while only using space polynomial
in the size of the concept description if the numbers in this description are not
written in unary notation.
It is not hard to see, however, that most of the successors required by

the at-least restrictions need not be introduced at all. If an individual � ob-
tains at least one �-successor due to the application of the ��-rule, then
the �	-rule need not be applied to � for the role �. Otherwise, we simply
introduce one �-successor as representative. In order to detect inconsistencies
due to conflicting number restrictions, we need to add another type of clashes:
���������� ��������� 	 � for nonnegative integers � � �. The canonical
interpretation obtained by this modified algorithm need not satisfy the at-least
restrictions in ��. However, it can easily be modified to an interpretation that
does, by duplicating �-successors (more precisely, the whole subtrees starting
at these successors).

THEOREM 4. Satisfiability of���� -concept descriptions is PSPACE-com-
plete, even if numbers are not represented in unary notation.

4.1.2. The consistency problem for ���� -ABoxes
Just as with ���, the extended rule set for ���� can also be applied
to arbitrary ABoxes. Unfortunately, the algorithm obtained this way need
not terminate, unless one imposes a specific strategy on the order of rule

studia--final-complete.tex; 14/08/2001; 13:30; p.12

Tableau Algorithms for Description Logics 13

applications. For example, consider the ABox

�� 	� ����� ��� ����� ����� ��
������ ������� ������

By applying the��-rule to �, we can introduce a new �-successor � of �:

�� 	� �� � ����� ��� � �����

The��-rule adds the assertion ����� ����, which triggers an application of
the��-rule to �. Thus, we obtain the new ABox

�� 	� �� � ������ ����� ���� ��� � �����

Since � has two �-successors in ��, the ��-rule is applicable to �. By
replacing every occurrence of � by �, we obtain the ABox

�� 	� �� � �� ���� ���� ��� � �����

Except for the individual names (and the assertion � ���, which is, however,
irrelevant), �� is identical to ��. For this reason, we can continue as above
to obtain an infinite chain of rule applications.
We can easily regain termination by requiring that generating rules (i.e.,

the rules �� and �) may only be applied if none of the other rules is
applicable. In the above example, this strategy would prevent the application
of the��-rule to � in the ABox�� ������� ����� since the��-rule is also
applicable. After applying the��-rule (which replaces � by �), the��-rule
is no longer applicable since � already has an �-successor that belongs to � .
In order to obtain a PSPACE algorithm for consistency of���� -ABoxes,

the pre-completion technique sketched above for ��� can also be applied to
���� (Hollunder, 1996).

THEOREM 5. Consistency of ���� -ABoxes is PSPACE-complete, even if
numbers are not represented in unary notation.

4.2. A TABLEAU ALGORITHM FOR ����

An obvious idea when attempting to extend the satisfiability algorithm for
���� to one that can handle ���� is the following (see (Van der Hoek
and De Rijke, 1995)):

� Instead of simply generating � new �-successors ��� � � � � �� in the�	-
rule, one also asserts that these individuals must belong to the qualifying
concept � of ������� by adding the assertions ����� to ��.

� The��-rule only applies to ������� if � also contains the assertions
����� (
 � � � ��
).

studia--final-complete.tex; 14/08/2001; 13:30; p.13

14 Franz Baader and Ulrike Sattler

The�choose-rule
Condition: � contains ���������� and ���� ��, but neither ���� nor �����.

Action: �� �� �� 	����, ��� �� � � 	�����.

Figure 3. The�choose-rule for qualified number restrictions.

Unfortunately, this does not yield a correct algorithm for satisfiability in
����. In fact, this simple algorithm would not detect that the concept de-
scription ����� ��
��� �� ��
���� � is unsatisfiable. The (obvious) prob-
lem is that, for some individual � and concept description � , the ABox may
neither contain ���� nor �����, whereas in the canonical interpretation con-
structed from the ABox, one of the two must hold. In order to overcome this
problem, the nondeterministic�choose-rule of Fig. 3 must be added (Hollun-
der and Baader, 1991). Together with the�choose-rule, the simple modifica-
tion of the�	- and��-rule described above yields a correct algorithm for
satisfiability in ���� (Hollunder and Baader, 1991).

4.2.1. Complexity issues
The approach that leads to a PSPACE-algorithm for ��� can be applied to
the algorithm for ���� as well. However, as with ���� , this yields a
PSPACE-algorithm only if the numbers in number restrictions are assumed
to be written in unary notation. For ����, the idea that leads to a PSPACE-
algorithm for ���� with non-unary notation does no longer work: it is not
sufficient to introduce just one successor as representative for the role succes-
sors required by at-least restrictions. Nevertheless, it is possible to design a
PSPACE-algorithm for���� also w.r.t. non-unary notation of numbers (To-
bies, 1999). Like the PSPACE-algorithm for ���, this algorithm treats the
successors separately. It uses appropriate counters (and a new type of clashes)
to check whether qualified number restrictions are satisfied. By combining
the pre-completion approach of (Hollunder, 1996) with this algorithm, we
also obtain a PSPACE-result for consistency of ����-ABoxes.

THEOREM 6. Satisfiability of ����-concept descriptions as well as con-
sistency of ����-ABoxes are PSPACE-complete problems, even if numbers
are not represented in unary notation.

5. Terminological axioms

DL systems usually provide their users also with a terminological formal-
ism. In its simplest form, this formalism can be used to introduce names for

studia--final-complete.tex; 14/08/2001; 13:30; p.14

Tableau Algorithms for Description Logics 15

complex concept descriptions. More general terminological formalisms can
be used to state connections between complex concept descriptions.

DEFINITION 4. A TBox is a finite set of terminological axioms of the form
�

�
� �, where ��� are concept descriptions. The terminological axiom

�
�
� � is called concept definition iff � is a concept name.
An interpretation � is a model of the TBox iff �� � �� holds for all

terminological axioms �
�
� � in .

The concept description � subsumes the concept description � w.r.t. the
TBox (written � �
 �) iff �� 	 �� for all models � of ; � is
satisfiable w.r.t. iff there exists a model � of such that �� �� �. The
Abox � is consistent w.r.t. iff it has a model that is also a model of . The
individual � is an instance of � w.r.t. � and iff �� � �� holds for each
model � of � and .

In the following, we restrict our attention to terminological reasoning (i.e.,
the satisfiability and subsumption problem) w.r.t. TBoxes; however, the meth-
ods and results also apply to assertional reasoning (i.e., the instance and the
consistency problem for ABoxes) (see, e.g., (Buchheit et al., 1993)).

5.1. ACYCLIC TERMINOLOGIES

The early DL systems provided TBoxes only for introducing names as abbre-
viations for complex descriptions. This is possible with the help of acyclic
terminologies.

DEFINITION 5. A TBox is an acyclic terminology iff it is a set of concept
definitions that neither contains multiple definitions nor cyclic definitions.
Multiple definitions are of the form �

�
� ���

�
� � for distinct concept

descriptions ���, and cyclic definitions are of the form ��

�
� ��� � � � � ��

�
�

��, where �� occurs in ���� (
 � � � �) and �� occurs in ��. If the acyclic
terminology contains a concept definition � �

� � , then � is called defined
name and � its defining concept.

Reasoning w.r.t. acyclic terminologies can be reduced to reasoning with-
out TBoxes by unfolding the definitions: this is achieved by repeatedly re-
placing defined names by their defining concepts until no more defined names
occur. Unfortunately, unfolding may lead to an exponential blow-up, as the
following acyclic terminology (due to Nebel (1990b)) demonstrates:

���

�
� ���� � ����� � � � � ����

�
� ���� � ������

This terminology is of size linear in �, but unfolding applied to �� results in
a concept description containing the name �� �� times. Nebel (1990b) also

studia--final-complete.tex; 14/08/2001; 13:30; p.15

16 Franz Baader and Ulrike Sattler

shows that this complexity can, in general, not be avoided: for the DL !��,
which allows for conjunction and value restriction only, subsumption between
concept descriptions can be tested in polynomial time, whereas subsumption
w.r.t. acyclic terminologies is coNP-complete.
For more expressive languages, the presence of acyclic TBoxes may or

may not increase the complexity of the subsumption problem. For exam-
ple, subsumption of concept descriptions in the language ��� is PSPACE-
complete, and so is subsumption w.r.t. acyclic terminologies (Lutz, 1999).
Of course, in order to obtain a PSPACE-algorithm for subsumption in ���
w.r.t. acyclic terminologies, one cannot first apply unfolding to the concept
descriptions to be tested for subsumption since this may need exponential
space. The main idea is to use a tableau algorithm like the one described in
Section 3, with the difference that it receives concept descriptions containing
defined names as input. Unfolding is then done on demand: if the tableau
algorithm encounters an assertion of the form ����, where � is a defined
name and � its defining concept, then it adds the assertion ����. However,
it does not further unfold � at this stage. It can be shown that this really
yields a PSPACE-algorithm for satisfiability (and thus also for subsumption)
of concepts w.r.t. acyclic terminologies in ��� (Lutz, 1999).

THEOREM 7. Satisfiability w.r.t. acyclic terminologies is PSPACE-complete
in ���.

Although this technique also works for many extensions of ��� (such as
���� and����), there are extensions for which it fails. One such example
is the language ���! , which extends ��� with functional roles as well as
agreements and disagreements on chains of functional roles.
More precisely, in���! , a set�	 	 �� of feature names is fixed, and a

feature chain � � �� � � � �� is defined to be a non-empty sequence of feature
names �� � �	 . An interpretation � maps each � � �	 to a functional role
�� , i.e., ��� ��� ��� �� � �� implies � � �. The interpretation of a feature
name can thus also be viewed as a partial function �� 	 �� � �� . For
this reason, we will usually write ����� � � instead of ��� �� � �� . The
feature chain � � �� � � � �� is interpreted as the composition of its features,
i.e., ����� 	� ��� �� � � �

�
� ��� � � � �.

The DL ���! is obtained from ��� by allowing for feature names in
value and existential restrictions, and for additional concept descriptions of
the form � " � (agreement) and � # � (disagreement), where �� � are feature
chains. These new descriptions are interpreted as follows:

�� " ��� � �� � �� � there is a � � �� with ����� � � � ������

�� # ��� � �� � �� � there are ��� �� � �� with �� �� ���

����� � �� and ����� � ���

studia--final-complete.tex; 14/08/2001; 13:30; p.16

Tableau Algorithms for Description Logics 17

The tableau-based satisfiability algorithm for ��� can easily be extended
to ���! (Hollunder and Nutt, 1990). Both agreements and disagreements
are handled by rules that generate the feature successors required by the
semantics. To ensure that features are interpreted as functional roles in the
canonical interpretation, one uses an identification rule (similar to the ��-
rule): if ���� ��� ���� �� occurs in the ABox, then the rule replaces every
occurrence of � by �, unless the ABox also contains an inequality assertion
� �
�
� �. This second case leads to a new type of clashes. Inequality assertions

are introduced by the rule that handles disagreements: the final individuals
reached by the feature chains are explicitly asserted to be distinct.
It can easily be seen that this algorithm can again be realised within poly-

nomial space. There is, however, a significant difference between the PSPACE-
algorithm for ��� and the one for ���! . Due to identifications caused
by agreements, the canonical interpretation built by the algorithm need no
longer have tree shape. For example, an application of the agreement rule to
����� " �������� leads to assertions ����� ���� ������ ��� ����� ���� ������ ��.
In particular, this means that the successors �� and �� of � cannot be handled
independently since they lead to a common successor. However, this problem
is restricted to individuals connected by feature chains. It is easy to show
that each such feature-connected component is polynomial in the size of the
concept description to be tested for satisfiability (if identification of feature
successors is done eagerly). Thus, it is unproblematic to generate the whole
feature-connected component issuing from a given individual.
In the presence of acyclic terminologies, this is no longer true. In fact, by

using a sequence of terminological axioms of the form ����
�
� ����� �

�����, one can enforce feature-connected components of size exponential in
the size of the given terminology and concept description. In (Lutz, 1999),
this fact is used to show that satisfiability of ���!-concept descriptions
w.r.t. acyclic terminologies is NEXPTIME-complete.

THEOREM 8. Satisfiability of���!-concept descriptions is PSPACE-com-
plete, but satisfiability w.r.t. acyclic terminologies is NEXPTIME-complete in
���! .

5.2. GENERAL TBOXES

For general terminological axioms of the form �
�
� �, where � may also

be a complex description, unfolding is obviously no longer possible. Instead
of considering finitely many such axioms ��

�
� ��� � � � � ��

�
� ��, it is

sufficient to consider the single axiom ��
�
� �, where

�� 	� ���� ���� � ��� � ���� � � � � � ���� ���� � ��� � ����

and � is an abbreviation for � � �� .

studia--final-complete.tex; 14/08/2001; 13:30; p.17

18 Franz Baader and Ulrike Sattler

The axiom ��
�
� � just says that any individual must belong to the concept

��. The tableau algorithm for ��� introduced in Section 3 can easily be
modified such that it takes this axiom into account: all individuals are simply
asserted to belong to ��. However, this modification may obviously lead to
nontermination of the algorithm.
For example, consider what happens if this algorithm is applied to test

consistency of the ABox�� 	� ������ ������w.r.t. the axiom ����
�
� �: the

algorithm generates an infinite sequence of ABoxes������ � � � and individu-
als ��� ��� � � � such that���� 	� ��������� ������ � ������� ����� ��������.
Since all individuals �� (� �
) receive the same concept assertions as ��, we
may say that the algorithm has run into a cycle.
Termination can be regained by using a mechanism that detects cyclic

computations, and then blocking the application of generating rules: the ap-
plication of the rule�� to an individual � is blocked by an individual � in an
ABox � iff �� � ���� � �� 	 ��� � ����� � ��. The main idea underly-
ing blocking is that the blocked individual � can use the role successors of �
instead of generating new ones. For example, instead of generating a new �-
successor for �� in the above example, one can simply use the �-successor of
��. This yields an interpretation � with�� 	� ���� ��� ���, � � 	� ���� ���,
and �� 	� ����� ���� ���� ���� ���� ����. Obviously, � is a model of both ��

and the axiom ����
�
� �. Since the set of concepts asserted for the blocked

individual is a subset of the set of those asserted for the blocking individual,
we call this blocking condition subset blocking.
To avoid cyclic blocking (of � by � and vice versa), we consider an enu-

meration of all individual names, and define that an individual � may only
be blocked by individuals � that occur before � in this enumeration. This,
together with some other technical assumptions, makes sure that a tableau
algorithm using this notion of blocking is sound and complete as well as
terminating both for ��� and ���� (see (Buchheit et al., 1993; Baader
et al., 1996) for details).
In the algorithm we have just described, we do not impose any order or

strategy on the application of the transformation rules. This leads to what is
called dynamic blocking (Horrocks and Sattler, 1999), where blocks can be
established and then broken. For example, suppose an individual � is blocked
by an individual �. Then, the application of the ��-rule to �’s predecessor
may add ���� to �. If ���� is not present in �, then � is no longer blocked
by �. However, using a strategy that (basically) applies generating rules only
if no non-generating ones can be applied, blocks that are established once will
never be broken again. Thus, when employing this strategy, we can block stat-
ically. Note that implementations of tableau-based algorithms usually employ
this strategy anyway.
It should be noted that the algorithm we have described above is no longer

in PSPACE since it may generate role paths of exponential length before

studia--final-complete.tex; 14/08/2001; 13:30; p.18

Tableau Algorithms for Description Logics 19

Table II. Syntax and semantics of role constructors and restrictions.

Constructor/Restriction Syntax Semantics

intersection � � � �� � ��� � �� � ��

union � � � �� � ��� � �� � ��

complement �� ����� � �� � ��

composition � Æ � �� Æ ��� � 	��� 	� � there is a � such that
��� ��
 �� and ��� 	�
 ��

transitive closure �� ����� � �����

inverse �	 ��	�� � 	��� �� � ��� ��
 ��

transitive roles �
 ��

� �� is transitive
role hierarchy � � � �� � ��

blocking occurs. In fact, even for the language ���, satisfiability w.r.t. gen-
eral terminological axioms is known to be EXPTIME-complete (Schild, 1994).
The tableau-based algorithm sketched above is a NEXPTIME algorithm. How-
ever, using the translation technique mentioned in the introduction, it can be
shown (De Giacomo and Lenzerini, 1994) that ���� -ABoxes and TBoxes
can be translated into PDL.

THEOREM 9. Consistency of ���� -ABoxes w.r.t. TBoxes is EXPTIME-
complete.

Blocking does not work for all extensions of ��� that have a tableau-based
satisfiability algorithm. An example is again the DL ���! , for which sat-
isfiability is decidable, but satisfiability w.r.t. general TBoxes undecidable
(Nebel, 1991; Baader et al., 1993).

6. Expressive roles

The DLs considered so far allowed for atomic roles only. There are two ways
of extending the expressivity of DLs w.r.t. roles: adding role constructors
and constraining the interpretation of roles. An overview of the syntax and
semantics of both are given in Table II, where the first part refers to role
constructors and the second to role constraints. Role constructors can be used
to build complex roles from atomic ones. In the following, we will mostly
restrict our attention to the inverse constructor, which makes it possible to
“use a role in both directions”. For example, using inverse roles, we can
describe both parents of nice children by ��� ������	��
 as well as children
of nice parents by ��� �������	��
. The other role constructors have also
been considered in the literature (e.g., Boolean operators in (De Giacomo,
1995; Lutz and Sattler, 2000), and composition, union, and transitive closure
in (Baader, 1991; Schild, 1991)).

studia--final-complete.tex; 14/08/2001; 13:30; p.19

20 Franz Baader and Ulrike Sattler

Constraining the interpretation of roles is very similar to imposing frame
conditions in modal logics. One possible such constraint has already been
mentioned in the previous section: in ���! the interpretation of roles � �
�	 	 �� is required to be functional. Here, we will consider transitive roles
and role hierarchies. In a DL with transitive roles, a subset��

� of the set of all
role names �� is fixed (Sattler, 1996). Elements of �

�

� must be interpreted
by transitive binary relations. (This corresponds to the frame condition for
the modal logic ��.) A role hierarchy is given by a finite set of role inclusion
axioms of the form � � � for roles �� �. An interpretation � satisfies the role
hierarchy $ iff �� 	 �� holds for each � � � � $. For example, we can use
the role inclusion axiom ��� ��� � ��� ����� to express that every son of a
person is also her child.

6.1. EXPRESSIVE ROLES IN NUMBER RESTRICTIONS

In DLs with expressive roles and number restrictions, the roles that are al-
lowed to occur in the number restrictions are usually of a restricted form
(see, e.g., (De Giacomo and Lenzerini, 1994; De Giacomo and Lenzerini,
1996; Horrocks et al., 1999; Haarslev and Möller, 2000b)). Whereas tableau-
based algorithms that respectively handle number restrictions on conjunctions
of roles (Donini et al., 1991a), on compositions of roles (Baader and Sattler,
1999), on inverse roles (see Section 6.2.3), and on roles occurring in a role hi-
erarchy (Horrocks and Sattler, 1999; Haarslev and Möller, 2000b) are known
from the literature, other role constructors and restrictions appear to be more
problematic when used within number restrictions.
Let us illustrate this with two examples. First, transitive closure of roles,

transitive roles, or roles having a transitive sub-role (with respect to a role hi-
erarchy) are usually not allowed inside number restrictions. In fact, a tableau-
based algorithm for a DL containing such number restrictions would need to
differ significantly from the algorithms we have described until now. Intu-
itively, this is due to the fact that transitivity (in one of the forms mentioned
above) can yield situations where, for a transitive role �, a long �-path starting
at an individual � would need to be collapsed into a single �-successor of �,
due to the presence of an assertion ��
�����. This destroys the tree shape of
the canonical interpretation to be generated, which (for example) means that
the usual arguments for showing termination can no longer be applied. At
least in the case where roles having transitive sub-roles are allowed to occur
in number restrictions, these problems cannot be overcome: the extension
of ���� that allows roles having transitive sub-roles to occur in number
restrictions has an undecidable subsumption problem (Horrocks et al., 1999).
Second, the combination of role composition with Boolean role construc-

tors and inverse roles in number restrictions usually causes undecidability. In
(Baader and Sattler, 1999), the tableau-based algorithm for ���� is first

studia--final-complete.tex; 14/08/2001; 13:30; p.20

Tableau Algorithms for Description Logics 21

extended to composition of roles in number restrictions, and then to union
and intersection of role compositions of the same length. It is also shown that
most of the other combinations lead to an undecidable DL.

6.2. ROLE HIERARCHIES, INVERSE ROLES, AND TRANSITIVE ROLES

Before considering different extensions of ��� and ���� by these role
constructors, a general remark is in order. For most of the DLs considered
in this subsection, satisfiability and subsumption of concept descriptions are
EXPTIME-complete problems. The reason for these DLs to be EXPTIME-
hard is that they can simulate general TBoxes within concept descriptions
(see below). The fact that they are in EXPTIME follows from results for
PDL and converse-PDL (Pratt, 1979; Harel, 1984). The tableau-based algo-
rithms that will be sketched below are NEXPTIME-algorithms. The point in
designing these algorithms was not to prove worst-case complexity results,
but rather to obtain “practical” algorithms, i.e., algorithms that are easy to
implement and optimise, and which behave well on realistic knowledge bases.
Nevertheless, the fact that “natural” tableau algorithms for such EXPTIME-
complete logics are usually NEXPTIME-algorithms is an unpleasant phe-
nomenon. In contrast, automata-based algorithms (Vardi and Wolper, 1986)
often yield optimal worst-case complexity results, but do not behave well
in practice (since they are also best-case exponential). Attempts to design
EXPTIME-tableaux for such logics (De Giacomo et al., 1996; De Giacomo
and Massacci, 1996; Donini and Massacci, 1999) usually lead to rather com-
plicated (and thus not easy to implement) algorithms, which (to the best of
our knowledge) have not been implemented yet.

6.2.1. DLs with transitive roles and role hierarchies
In the DL �$, i.e., the extension of��� with transitive roles and role hierar-
chies, reasoning w.r.t. (general) TBoxes can be reduced to reasoning without
TBoxes using a standard technique from modal logics, which is called in-
ternalisation in the DL literature (Schild, 1991; Baader et al., 1993). As
mentioned in Section 5.2, we may assume that TBoxes consist of a single
axiom of the form ��

�
� �. Internalisation of this axiom introduces a new

transitive role �, and asserts in the role hierarchy that � is a super-role of all
roles occurring in �� and the concept description �� to be tested for satisfia-
bility. Then, �� is satisfiable w.r.t. � ��

�
� �� iff �� � �� � �� �� is satisfiable

with respect to the role hierarchy.
With respect to expressive power, this is a nice property of �$. How-

ever, it also shows that satisfiability and subsumption of concept descrip-
tions in �$ is EXPTIME-hard.5 The tableau algorithm for �$ presented
in (Horrocks, 1998b) handles role hierarchies by an appropriate definition of

5 More precisely, reasoning in �� is EXPTIME-complete (Horrocks et al., 2000a).

studia--final-complete.tex; 14/08/2001; 13:30; p.21

22 Franz Baader and Ulrike Sattler

�-successors: an individual � is called an �-successor of an individual � in
an ABox � iff ���� �� � � for some sub-role � of �. Then, the condition
���� �� � � in the��- and the��-rule is replaced by the condition “if � is
an �-successor of � in �”. Transitive roles are taken care of by a new rule,
the ��

� -rule, which, basically, adds �������� to � iff � is an �-successor
of � such that �������� � � and � is a transitive sub-role of �. (Note that
this corresponds to the treatment of ��-modalities in tableau algorithms from
modal logics (Halpern andMoses, 1992).) Obviously, this shifting of value re-
strictions along transitive roles makes for a non-terminating algorithm, unless
one employs an appropriate blocking technique. The blocking strategy used
in (Horrocks, 1998b) coincides with the one we have presented in Section 5.2,
i.e., subset-blocking.

6.2.2. DLs with transitive and inverse roles, and role hierarchies
The extension of �$ with inverse roles is called �$�. In this DL, TBoxes
can be internalised in a way similar to the one we have described for �$.
The only difference is that now � is not only specified as a (transitive) super-
role of all roles occurring in the input concept and the TBox, but also of the
inverses of these roles (Horrocks and Sattler, 1999).
In (Horrocks and Sattler, 1999), a tableau algorithm for �$� is obtained

from the one for �$ sketched above by extending the notion of �-successors
to �-neighbours, and modifying the transformation rules accordingly. Mod-
ulo some technical details, an individual � is called an �-neighbour of an
individual � in � iff ���� �� � � or ����� �� � � for some sub-role �
of �. Obviously, using �-neighbours instead of �-successors in the new��-
rule implies that the rule can now be applied in both direction. For example,
if ����� ��� �������� � �, then the rule adds ����. The main technical
problem is to find an appropriate blocking condition, i.e., a condition that still
ensures termination, but does not compromise correctness of the algorithm.
The blocking strategy introduced in (Horrocks and Sattler, 1999) differs in
two points from blocking for �$.
First, one can no longer use subset blocking as described in Section 5.2.

Consider the example shown in Fig. 4 (where, for the sake of legibility, not all
concepts necessary for generating this situation are explicitly given). If subset
blocking is used, then � is blocked by �. However, when building the canon-
ical interpretation � , the �-successor �� of � is used to satisfy ���������,
i.e., ��� ��� � �� . This violates the value restriction for ��, which shows that
the interpretation obtained this way is not a model of the complete and open
ABox. This problem can be overcome by using equality blocking, i.e., an
individual � is blocked by an individual � iff �� � ���� � �� � ��� �
����� � ��.
Second, blocking is now dynamic, even if rules are applied according to

the strategy that applies non-generating rules with higher priority. This is

studia--final-complete.tex; 14/08/2001; 13:30; p.22

Tableau Algorithms for Description Logics 23

����������

��
�

��������� � � �
�

�� ������ ���������������� � � �
�

����������� ���������� � � ��

Figure 4. A situation where subset blocking fails for ���.

due to the fact that the ��-rule can be applied back and forth on a chain
of individuals.
Alternatively to the approach described until now, which goes back and

forth in the interpretation to be generated, one could have chosen to guess
(nondeterministically) all those assertions ���� that could be propagated
“back” from an �-successor � of � due to value restrictions ���������.
In the case of a wrong guess, one has a new type of clashes. The analytic
cut rule in (De Giacomo and Massacci, 1996) does this for a well-chosen,
relatively small set of sub-descriptions of the input description. In this setting,
blocking would again become static. However, in an actual implementation
it is preferable to avoid this “blind” guessing. For �$� (and its extensions
treated in the following subsections), avoiding this source of nondeterminism
is indeed possible. This does not appear to be the case for the extension of
��� with transitive closure and inverse of roles. This DL is closely related
to converse-PDL, for which a tableau algorithm is presented in (De Giacomo
and Massacci, 1996) using the analytic cut rule. (In Section 6.2.4, we will
comment in more detail on tableau algorithms for DLs with transitive closure
of roles.)
By dropping role hierarchies from �$�, we obtain the logic ��. Ob-

viously, the internalisation of TBoxes sketched above does no longer work
since we cannot specify super-roles of roles. It can be shown that �� is
indeed less complex than �$ or �$�. Using a rather sophisticated blocking
technique, a tableau algorithm can be designed that decides satisfiability of
concept descriptions in �� using space polynomial in the size of the input
description (Spaan, 1993; Horrocks et al., 1999). This implies that satisfia-
bility of concept descriptions in �� is PSPACE-complete, i.e., of the same
worst-case complexity as ���.

studia--final-complete.tex; 14/08/2001; 13:30; p.23

24 Franz Baader and Ulrike Sattler

6.2.3. DLs with transitive and inverse roles, role hierarchies, and number
restrictions

Things become even more complicated for the DL �$�� , which extends
�$� with unqualified number restrictions on simple roles. A role � is called
simple iff � is an atomic role or its inverse such that � does not have a transitive
sub-role (Horrocks and Sattler, 1999).
In contrast to �$�, the DL �$�� no longer has the finite model prop-

erty. For example, if the role hierarchy contains the axiom � � � for a
transitive role � � ��

� , then the following concept is obviously satisfiable,
but each of its models has an infinite �-path: ������������������
�����
Thus, instead of directly trying to construct a (possibly infinite) inter-

pretation that satisfies ��, the tableau algorithm for �$�� introduced in
(Horrocks and Sattler, 1999; Horrocks et al., 1999) first tries to construct a
so-called pre-model, i.e., a structure that can be “unravelled” to a (possibly
infinite) canonical (tree) interpretation. In principle, this algorithm is obtained
by extending the algorithm for �$� with the rules that handle number re-
strictions. The main technical problem to be solved is again to design the
appropriate blocking condition.
Unravelling is also known in modal logic (see, for example, (Stirling,

1992)), and works as follows. To construct a model from a pre-model, we
define elements of the model’s domain to be paths in the pre-model that
follow edges ���� �� where, instead of going to a blocked individual, the path
goes to its blocking individual. Thus, if blocking occurs, we may obtain an
infinite model (e.g., if the blocking individual is a predecessor of the blocked
individual)—even though the input concept might have a finite one.
Before describing the blocking condition introduced in (Horrocks and

Sattler, 1999; Horrocks et al., 1999), let us point out a new phenomenon
that can occur when running the tableau algorithm for �$�� . Due to the
interaction of role hierarchies and number restrictions, the algorithm can
generate an ABox � with ����� ��� ���� ��� 	 � where �� � are not sub-
roles of each other. This situation can be caused by an assertion ��
�����,
where � is a common super-role of � and �, and � already has an �- and an
�-successor. These two successors are then merged into the single successor
�. Note, however, that each individual generated by the algorithm still has a
unique predecessor, though it may be related with more than one role to this
predecessor.
The new blocking condition for �$�� is called pair-wise blocking. It

extends the one for �$� as follows. In order for an individual � to be blocked
by an individual �, the predecessors of � and � must also have identical
assertion attached to them, and � and � must be related by the same roles to
their respective predecessors. More precisely, assume that �� � are individuals
in � that respectively have the predecessors ��� �� in �. For � to be blocked
by �, the following conditions must be satisfied: (i) for each role �, � is an

studia--final-complete.tex; 14/08/2001; 13:30; p.24

Tableau Algorithms for Description Logics 25

�

�

� ����� ����� �� � �	����� ���	�������� ���������� ������������

	 ��	�� ��	�� �� � �	��	�� ���	�����	�� �������	�� ����������	�

� ������ �������� ���������� ������������

Figure 5. A situation where pair-wise blocking is crucial.

�-successor of �� iff � is an �-successor of ��; (ii) �� � ���� � �� �
��� � ����� � ��; and (iii) �� � ����� � �� � ��� � ������ � ��.
The following example should give a better intuition for why this complex
blocking condition is needed. In Fig. 5, we show relevant parts of an ABox
that was generated to decide the satisfiability of the concept ��, where

�� 	� �� � ������ � ���������

� is a sub-role of the transitive role �, and � 	� � � ��
��� � ��������.
Using equality blocking, � would be blocked by �. When constructing the
canonical interpretation, we cannot re-use �’s �-successor as �’s successor:
this would make � an �-successor of itself, and thus � would have itself and �
as ��-successors, contradicting the assertion ��
������. Thus, unravelling is
really necessary in this example. As explained above, unravelling the ABox
to an interpretation would generate as elements of the interpretation the path
��� (corresponding to �), the path ��� �� (corresponding to �), the path ��� �� ��
(which is used instead of the blocked individual �), the path ��� �� �� �� etc.
However, in this interpretation the element ��� �� �� and its successors do not
belong to the concept description ������, which shows that this interpreta-
tion does not satisfy ��. With respect to pair-wise blocking, � is not blocked
by � since the predecessor � of � has a concept assertion ������� that the
predecessor � of � does not have. Hence the tableau algorithm generates an �-
successor to satisfy ��������� and an ��-successor to satisfy �����������.
It should be noted that the problems that lead to the need for pair-wise

blocking do not depend on the presence of “large” numbers in number re-
strictions. In fact, the above example used only functional restrictions, i.e.,
number restrictions of the form ��
 ��.
The tableau-based satisfiability algorithm for �$�� described until now

can also be extended to decide the consistency of ABoxes (Horrocks et al.,
2000b). Recall that, for ���� , the naive extension of the satisfiability al-
gorithm to a consistency algorithm ran into termination problems. This prob-
lem can be overcome by applying the pre-completion technique, which re-
duces ABox consistency to satisfiability of concept descriptions (see Sec-
tion 4.1.2). Pre-completion does not work for �$�� due to the presence
of inverse roles. For example, the inconsistency of the ABox ����� ��� ����

studia--final-complete.tex; 14/08/2001; 13:30; p.25

26 Franz Baader and Ulrike Sattler

����������������� cannot be detected if, after the application of non-
generating rules only, � and � are treated in unrelated ABoxes. However,
the termination problem pointed out for ���� is not relevant for �$��
since the algorithm employs blocking to ensure termination. Basically, the
only difference between the satisfiability and the consistency algorithm for
�$�� is that one must be a bit more careful when the block involves old
individuals, i.e., individuals present in the input ABox.

6.2.4. DLs with the transitive closure of roles
Finally, let us briefly comment on the difference between transitive roles and
transitive closure of roles. The transitive closure of roles is more expressive,
but it appears that one has to pay dearly for this. In fact, whereas there ex-
ist quite efficient implementations for very expressive DLs with transitive
roles, inverse roles, and role hierarchies (see above), no such implementations
are known (to us) for closely related logics with transitive closure, such as
converse-PDL (which is a notational variant of the extension of��� by tran-
sitive closure, union, composition, and inverse of roles (Schild, 1991)). One
reason could be that the known tableau algorithm for converse-PDL (De Gi-
acomo and Massacci, 1996) requires an analytic cut rule (see Section 6.2.2),
which is massively nondeterministic, and thus very hard to implement effi-
ciently.
Another problem with transitive closure is that a blocked individual need

no longer indicate “success”, as is the case in DLs with transitive roles. In the
presence of transitive closure, when blocking occurs, one must check whether
this block is due to a harmless, cyclic repetition of the same assertions (as is
always the case for �$��), or whether the block is caused by the repeated
unsuccessful attempt to satisfy an assertion of the form ����������, where �
is unsatisfiable or in conflict with an assertion ���������. The former case
is called a “good” cycle and the latter a “bad” cycle in (Baader, 1991). To
satisfy an assertion of the form ���������� (often called “eventuality” in the
modal or temporal logic literature), one has two possibilities: (i) satisfy it now,
i.e., generate an �-successor that belongs to �; or (ii) defer it till later on, i.e.,
generate an �-successor that belongs to ����� . However, one must ensure
that the ���������� is satisfied eventually, i.e., one does not always choose
the second alternative. To ensure termination, the algorithm in (Baader, 1991)
basically uses equality blocking, together with a rather strict strategy on the
application of rules. A block (called cycle in (Baader, 1991)) can now indicate
two things: either it is good, which corresponds to the situation encountered
in logics like �$�� , or it is bad, which corresponds to infinitely deferring
to satisfy an eventuality. Since good cycles can be distinguished from bad
cycles, the algorithm can stop with success in the first case, and it must
backtrack in the second. Note that the algorithm in (Baader, 1991) is very
similar to the satisfiability algorithm for DPDL sketched in Section 5.3 of

studia--final-complete.tex; 14/08/2001; 13:30; p.26

Tableau Algorithms for Description Logics 27

(Ben-Ari et al., 1982). The main difference is that Ben-Ari et al. (1982) first
treat all cycles as good, but then detect bad cycles by checking whether the
generated interpretation really satisfies the input formula.
Automata-based methods (Vardi and Wolper, 1986) elegantly treat the

problems caused by eventualities by employing appropriate acceptance con-
ditions (e.g., Büchi acceptance). However, as mentioned above, a direct im-
plementation of these methods is also best-case exponential. To the best of
our knowledge, there is no efficient implementation of these methods, and
we conjecture that an attempt to optimise them would lead to an algorithm
that is very similar to a tableau algorithm.

7. Conclusion

Though many of the tableau-based algorithms sketched in this paper are of
optimal worst-case complexity, and thus provide complexity results for sub-
sumption and satisfiability in DLs, theoretical complexity results never were
the main focus of this line of DL research. The design of these algorithms was
strongly motivated by the goal to obtain practical algorithms, i.e., algorithms
that are easy to implement and optimise, and which behave well on realistic
knowledge bases. In particular, for the logics treated in Section 6.2, the ex-
act worst-case complexity (EXPTIME) was known before the (NEXPTIME)
tableau algorithms sketched above were designed. The claim that these al-
gorithms really are “practical” must still be supported by more empirical
evaluations, but the first results are rather encouraging (see below).
The notion of what is thought to be a practical subsumption algorithm

in description logics has gone through a remarkable evolution in the last 15
years. Throughout the eighties and up to the early nineties, anything non-
polynomial was deemed to be impractical. Consequently, when the first com-
plexity results showed that all of the DLs used in systems had subsumption
problems of a higher complexity, the proposed solution was either to restrict
the expressive power or to employ incomplete algorithms. The first tableau
algorithms for more expressive DLs (with PSPACE-complete subsumption
problems) were widely considered to be of (complexity) theoretic interest
only, though not by their designers. In fact, it turned out that implementations
of these algorithms were amenable to optimisation techniques and behaved
quite well in practice (Baader et al., 1994; Bresciani et al., 1995).
Following this lead, Ian Horrocks implemented the first system, FaCT,

based on an EXPTIME-complete DL. The satisfiability algorithm of FaCT is
a highly optimised implementation of the tableau algorithm for �$ sketched
above. FaCTwas originally designed to represent medical terminology (where
the whole expressive power of �$ is needed), and it has behaved very well
on the large medical knowledge base it was designed for (Horrocks, 1998b).

studia--final-complete.tex; 14/08/2001; 13:30; p.27

28 Franz Baader and Ulrike Sattler

In addition, FaCT performed equally well on randomly generated bench-
marks for formulae in (PSPACE) modal logics designed for system com-
parisons (Horrocks, 1998a; Patel-Schneider and Horrocks, 1999; Horrocks,
2000). These formulae do not use the whole expressive power of �$, but
to the best of our knowledge there are no benchmark formulae available
for EXPTIME-complete logics. Encouraged by these experiences, other DL
systems were designed that use (optimised) implementations of the tableau al-
gorithms described in Section 6.2, and they also proved to behave quite well,
both in realistic applications, and on the available (PSPACE) benchmarks
(Horrocks and Patel-Schneider, 1999; Haarslev and Möller, 2000b; Horrocks
et al., 2000a). This shows that, at the beginning of the new millennium,
even an EXPTIME-algorithm is no longer automatically considered to be
impractical in the DL community.
Databases have turned out to be a very interesting application area for

DLs, which needs the expressive power offered by logics such as �$�� .
Indeed, such expressive DLs can be viewed as a unifying formalism for class-
based representation systems such as object-oriented or frame-based systems,
and they capture the semantics of conceptual modelling formalisms such as
Entity-Relationship diagrams (Calvanese et al., 1999b). DL systems can be
used to support the design and evolution of database schemata or to opti-
mise queries (Calvanese et al., 1998a; Calvanese et al., 1998c); to support
the integration of sources in heterogeneous databases/data warehouses (Cal-
vanese et al., 1998b; Calvanese et al., 1999a); and to support the conceptual
modelling of multidimensional aggregation (Franconi and Sattler, 1999).
A first tool that provides an interface for the above mentioned database

applications is �%�� (Franconi and Ng, 2000). Its graphical user interface
supports the design of conceptual models using enhanced Entity-Relationship
diagrams. The underlying inference engine is the new version of the DL
system FaCT which implements �$��, i.e., the extension of �$�� with
qualified number restrictions. Once the user has finished a modelling step, she
can ask the system to translate the conceptual model into a �$�� knowl-
edge base. This knowledge base is then given to FaCT, which checks for
implicit IS-A (i.e., subsumption) relationships between entities/relations and
tests entities/relations for inconsistencies. In case of an inconsistency or an
unexpected IS-A link, the user can then modify her conceptual model appro-
priately.

References

Baader, F.: 1991, ‘Augmenting Concept Languages by Transitive Closure of Roles: An Al-
ternative to Terminological Cycles’. In: Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI-91). A long version appeared as DFKI-Research-Report RR-90-13,
Kaiserslautern, Germany.

studia--final-complete.tex; 14/08/2001; 13:30; p.28

Tableau Algorithms for Description Logics 29

Baader, F., M. Buchheit, and B. Hollunder: 1996, ‘Cardinality Restrictions on Concepts’.
Artificial Intelligence Journal 88(1–2), 195–213.

Baader, F., H.-J. Bürckert, B. Nebel, W. Nutt, and G. Smolka: 1993, ‘On the Expressivity of
Feature Logics with Negation, Functional Uncertainty, and Sort Equations’. Journal of
Logic, Language and Information 2, 1–18.

Baader, F., E. Franconi, B. Hollunder, B. Nebel, and H. Profitlich: 1994, ‘An Empirical Anal-
ysis of Optimization Techniques for Terminological Representation Systems or: Making
KRIS get a move on’. Applied Artificial Intelligence. Special Issue on Knowledge Base
Management 4, 109–132.

Baader, F. and P. Hanschke: 1991, ‘A Schema for Integrating Concrete Domains into Concept
Languages’. Technical Report RR-91-10, Deutsches Forschungszentrum für Künstliche
Intelligenz (DFKI), Kaiserslautern, Germany. An abridged version appeared in Proc. of
the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91).

Baader, F. and B. Hollunder: 1991, ‘A Terminological Knowledge Representation System
with Complete Inference Algorithm’. In: Proc. of PDK’91, Vol. 567 of Lecture Notes
In Artificial Intelligence. pp. 67–86, Springer-Verlag.

Baader, F. and U. Sattler: 1999, ‘Expressive Number Restrictions in Description Logics’.
Journal of Logic and Computation 9(3), 319–350.

Baader, F. and U. Sattler: 2000, ‘Tableau Algorithms for Description Logics’. In: R. Dyckhoff
(ed.): Proc. of the Int. Conf. on Automated Reasoning with Tableaux and Related Methods
(Tableaux 2000), Vol. 1847 of Lecture Notes in Artificial Intelligence. pp. 1–18, Springer-
Verlag.

Ben-Ari, M., J. Y. Halpern, and A. Pnueli: 1982, ‘Deterministic Propositional Dynamic Logic:
Finite Models, Complexity, and Completeness’. Journal of Computer and System Science
25, 402–417.

Borgida, A. and P. F. Patel-Schneider: 1994, ‘A Semantics and Complete Algorithm for Sub-
sumption in the CLASSIC Description Logic’. Journal of Artificial Intelligence Research
1, 277–308.

Brachman, R. J.: 1992, ‘“Reducing” CLASSIC to Practice: Knowledge Representation Meets
Reality’. In: Proc. of the 3rd Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR-92). pp. 247–258, Morgan Kaufmann.

Brachman, R. J. and H. J. Levesque: 1984, ‘The Tractability of Subsumption in Frame-Based
Description Languages’. In: Proc. of the 4th Nat. Conf. on Artificial Intelligence (AAAI-
84), pp. 34–37, AAAI Press.

Brachman, R. J. and H. J. Levesque (eds.): 1985, Readings in Knowledge Representation.
Morgan Kaufmann.

Brachman, R. J. and J. G. Schmolze: 1985, ‘An Overview of the KL-ONE Knowledge
Representation System’. Cognitive Science 9(2), 171–216.

Bresciani, P., E. Franconi, and S. Tessaris: 1995, ‘Implementing and Testing Expressive De-
scription Logics: Preliminary Report’. In: A. Borgida, M. Lenzerini, D. Nardi, and B.
Nebel (eds.):Working Notes of the 1995 Description Logics Workshop. pp. 131–139.

Buchheit, M., F. M. Donini, and A. Schaerf: 1993, ‘Decidable Reasoning in Terminological
Knowledge Representation Systems’. Journal of Artificial Intelligence Research 1, 109–
138.

Calvanese, D., G. De Giacomo, and M. Lenzerini: 1998a, ‘On the Decidability of Query
Containment under Constraints’. In: Proc. of the Seventeenth ACM SIGACT SIGMOD
Sym. on Principles of Database Systems (PODS-98). pp. 149–158.

Calvanese, D., G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati: 1998b, ‘Descrip-
tion Logic Framework for Information Integration’. In: Proc. of the 6th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR-98). pp. 2–13, Morgan
Kaufmann.

studia--final-complete.tex; 14/08/2001; 13:30; p.29

30 Franz Baader and Ulrike Sattler

Calvanese, D., G. De Giacomo, and R. Rosati: 1999a, ‘Data Integration and Reconcilia-
tion in Data Warehousing: Conceptual Modeling and Reasoning Support’. Network and
Information Systems 4(2).

Calvanese, D., G. D. Giacomo, M. Lenzerini, and D. Nardi: 2001, ‘Reasoning in Expressive
Description Logics’. In: A. Robinson and A. Voronkov (eds.): Handbook of Automated
Reasoning. Amsterdam, NL: Elsevier Science Publishers.

Calvanese, D., M. Lenzerini, and D. Nardi: 1998c, ‘Description Logics for Conceptual Data
Modeling’. In: J. Chomicki and G. Saake (eds.): Logics for Databases and Information
Systems. Kluwer Academic Publisher, pp. 229–264.

Calvanese, D., M. Lenzerini, and D. Nardi: 1999b, ‘Unifying Class-Based Representation
Formalisms’. Journal of Artificial Intelligence Research 11, 199–240.

De Giacomo, G.: 1995, ‘Decidability of Class-Based Knowledge Representation Formalisms’.
Ph.D. thesis, Dipartimento di Informatica e Sistemistica, Università di Roma “La
Sapienza”.

De Giacomo, G., F. Donini, and F. Massacci: 1996, ‘EXPTIME tableaux for ���’. In: Proc.
of the 1996 Description Logic Workshop (DL’96).

De Giacomo, G. and M. Lenzerini: 1994, ‘Boosting the Correspondence between Description
Logics and Propositional Dynamic Logics’. In: Proc. of the 12th Nat. Conf. on Artificial
Intelligence (AAAI-94). pp. 205–212, AAAI Press/The MIT Press.

De Giacomo, G. and M. Lenzerini: 1996, ‘TBox and ABox Reasoning in Expressive Descrip-
tion Logics’. In: L. C. Aiello, J. Doyle, and S. C. Shapiro (eds.): Proc. of the 5th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR-96). pp. 316–327,
Morgan Kaufmann.

De Giacomo, G. and F. Massacci: 1996, ‘Tableaux and algorithms for propositional dynamic
logic with converse’. In: Proc. of the 13th Conf. on Automated Deduction (CADE-96),
Vol. 1104 of Lecture Notes In Artificial Intelligence. pp. 613–628, Springer-Verlag. A
long versioned will appear in Information and Computation.

Donini, F. M., B. Hollunder, M. Lenzerini, A. M. Spaccamela, D. Nardi, and W. Nutt:
1992, ‘The Complexity of Existential Quantification in Concept Languages’. Artificial
Intelligence Journal 2–3, 309–327.

Donini, F. M., M. Lenzerini, D. Nardi, and W. Nutt: 1991a, ‘The Complexity of Concept
Languages’. In: J. Allen, R. Fikes, and E. Sandewall (eds.): Proc. of the 2nd Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR-91). pp. 151–162,
Morgan Kaufmann.

Donini, F. M., M. Lenzerini, D. Nardi, and W. Nutt: 1991b, ‘Tractable Concept Languages’.
In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91). pp. 458–463.

Donini, F. M., M. Lenzerini, D. Nardi, and A. Schaerf: 1994, ‘Deduction in Concept Lan-
guages: From Subsumption to Instance Checking’. Journal of Logic and Computation
4(4), 423–452.

Donini, F. M., M. Lenzerini, D. Nardi, and A. Schaerf: 1996, ‘Reasoning in Description
Logics’. In: G. Brewka (ed.): Principles of Knowledge Representation, Studies in Logic,
Language and Information. CSLI Publications, pp. 193–238.

Donini, F. M. and F. Massacci: 1999, ‘EXPTIME Tableaux for ALC’. Technical Report 32/99,
Dipartimento di Ingegenria dell’Informazione, Universita degli studi di Siena, Italy. To
appear in Artificial Intelligence.

Franconi, E. and G. Ng: 2000, ‘The �	��� Tool for Intelligent Conceptual Modelling’.
In: Working Notes of the ECAI2000 Workshop on Knowledge Representation Meets
Databases (KRDB2000), CEUR Electronic Workshop Proceedings.

Franconi, E. and U. Sattler: 1999, ‘ADataWarehouse Conceptual Data Model for Multidimen-
sional Aggregation: a preliminary report’. Italian Association for Artificial Intelligence
AI*IA Notizie 1, 9–21.

studia--final-complete.tex; 14/08/2001; 13:30; p.30

Tableau Algorithms for Description Logics 31

Haarslev, V. and R. Möller: 1999, ‘RACE System Description’. In: Proc. of the 1999 Descrip-
tion Logic Workshop (DL’99). pp. 130–132, CEUR Electronic Workshop Proceedings.

Haarslev, V. and R. Möller: 2000a, ‘Consistency Testing: The RACE Experience’. In: R.
Dyckhoff (ed.): Proc. of the Int. Conf. on Automated Reasoning with Tableaux and Related
Methods (Tableaux 2000), Vol. 1847 of Lecture Notes in Artificial Intelligence. pp. 57–61,
Springer-Verlag.

Haarslev, V. and R. Möller: 2000b, ‘Expressive ABox Reasoning with Number Restrictions,
Role Hierarchies, and Transitively Closed Roles’. In: Proc. of the 7th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR-00). Morgan Kaufmann.

Halpern, J. Y. and Y. Moses: 1992, ‘A Guide to Completeness and Complexity for Modal
Logics of Knowledge and Belief’. Artificial Intelligence Journal 54, 319–379.

Hanschke, P.: 1992, ‘Specifying Role Interaction in Concept Languages’. In: Proc. of the
3rd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR-92). pp.
318–329, Morgan Kaufmann.

Harel, D.: 1984, ‘Dynamic Logic’. In: Handbook of Philosophical Logic, Vol. 2. Dordrecht,
Holland: D. Reidel, pp. 497–640.

Hollunder, B.: 1990, ‘Hybrid Inferences in KL-ONE-based Knowledge Representation
Systems’. In: Proc. of GWAI’90, Vol. 251 of Informatik-Fachberichte. pp. 38–47,
Springer-Verlag.

Hollunder, B.: 1996, ‘Consistency Checking Reduced to Satisfiability of Concepts in Ter-
minological Systems’. Annals of Mathematics and Artificial Intelligence 18(2–4),
133–157.

Hollunder, B. and F. Baader: 1991, ‘Qualifying Number Restrictions in Concept Languages’.
In: Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-91). pp. 335–346, Morgan Kaufmann.

Hollunder, B. and W. Nutt: 1990, ‘Subsumption Algorithms for Concept Languages’. Tech-
nical Report RR-90-04, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI),
Kaiserslautern, Germany.

Hollunder, B., W. Nutt, and M. Schmidt-Schauß: 1990, ‘Subsumption Algorithms for Concept
Description Languages’. In: Proc. of the 9th European Conf. on Artificial Intelligence
(ECAI-90). pp. 348–353, Pitman.

Horrocks, I.: 1998a, ‘The FaCT System’. In: H. de Swart (ed.): Proc. of the Int. Conf. on
Automated Reasoning with Tableaux and Related Methods (Tableaux-98), Vol. 1397 of
Lecture Notes in Artificial Intelligence. pp. 307–312, Springer-Verlag.

Horrocks, I.: 1998b, ‘Using an Expressive Description Logic: FaCT or Fiction?’. In: Proc. of
the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR-98).
pp. 636–647, Morgan Kaufmann.

Horrocks, I.: 2000, ‘Benchmark Analysis for FaCT’. In: R. Dyckhoff (ed.): Proc. of the Int.
Conf. on Automated Reasoning with Tableaux and Related Methods (Tableaux 2000), Vol.
1847 of Lecture Notes in Artificial Intelligence. pp. 62–66, Springer-Verlag.

Horrocks, I. and P. F. Patel-Schneider: 1999, ‘Optimizing Description Logic Subsumption’.
Journal of Logic and Computation 9(3), 267–293.

Horrocks, I. and U. Sattler: 1999, ‘A Description Logic with Transitive and Inverse Roles and
Role Hierarchies’. Journal of Logic and Computation 9(3), 385–410.

Horrocks, I., U. Sattler, and S. Tobies: 1999, ‘Practical Reasoning for Expressive De-
scription Logics’. In: Proc. of the 6th Int. Conf. on Logic for Programming and
Automated Reasoning (LPAR’99), Vol. 1705 of Lecture Notes In Artificial Intelligence.
Springer-Verlag.

Horrocks, I., U. Sattler, and S. Tobies: 2000a, ‘Practical Reasoning for Very Expressive
Description Logics’. Logic Journal of the IGPL 8(3), 239–264.

studia--final-complete.tex; 14/08/2001; 13:30; p.31

32 Franz Baader and Ulrike Sattler

Horrocks, I., U. Sattler, and S. Tobies: 2000b, ‘Reasoning with Individuals for the Description
Logic SHIQ’. In: D. MacAllester (ed.): Proc. of the 13th Conf. on Automated Deduction
(CADE-17). Springer-Verlag.

Lutz, C.: 1999, ‘Complexity of Terminological Reasoning Revisited’. In: Proc. of the 6th
Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99), Vol. 1705 of
Lecture Notes In Artificial Intelligence. Springer-Verlag.

Lutz, C. and U. Sattler: 2000, ‘The Complexity of Reasoning with Boolean Modal Logic’. In:
Advances in Modal Logic 2000 (AiML 2000). Leipzig, Germany.

MacGregor, R.: 1991, ‘The Evolving Technology of Classification-Based Knowledge Rep-
resentation Systems’. In: J. F. Sowa (ed.): Principles of Semantic Networks. Morgan
Kaufmann, pp. 385–400.

Mays, E., R. Dionne, and R. Weida: 1991, ‘K-REP System Overview’. SIGART Bulletin 2(3).
Minsky, M.: 1981, ‘A Framework for Representing Knowledge’. In: J. Haugeland (ed.):Mind

Design. The MIT Press. Republished in (Brachman and Levesque, 1985).
Nebel, B.: 1990a, Reasoning and Revision in Hybrid Representation Systems, Vol. 422 of

Lecture Notes In Artificial Intelligence. Springer-Verlag.
Nebel, B.: 1990b, ‘Terminological Reasoning is Inherently Intractable’. Artificial Intelligence

Journal 43, 235–249.
Nebel, B.: 1991, ‘Terminological Cycles: Semantics and Computational Properties’. In: J. F.

Sowa (ed.): Principles of Semantic Networks. Morgan Kaufmann, pp. 331–361.
Patel-Schneider, P.: 2000, ‘TANCS-2000 Results for DLP’. In: R. Dyckhoff (ed.): Proc. of the

Int. Conf. on Automated Reasoning with Tableaux and Related Methods (Tableaux 2000),
Vol. 1847 of Lecture Notes in Artificial Intelligence. pp. 72–76, Springer-Verlag.

Patel-Schneider, P. F.: 1999, ‘DLP’. In: Proc. of the 1999 Description Logic Workshop
(DL’99). pp. 9–13, CEUR Electronic Workshop Proceedings.

Patel-Schneider, P. F. and I. Horrocks: 1999, ‘DLP and FaCT’. In: Proceedings of the
International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX-99), Vol. 1397 of Lecture Notes In Artificial Intelligence. pp. 19–23,
Springer-Verlag.

Patel-Schneider, P. F., D. L. McGuiness, R. J. Brachman, L. A. Resnick, and A. Borgida: 1991,
‘The CLASSIC Knowledge Representation System: Guiding Principles and Implementa-
tion Rational’. SIGART Bulletin 2(3), 108–113.

Peltason, C.: 1991, ‘The BACK System – an Overview’. SIGART Bulletin 2(3), 114–119.
Pratt, V. R.: 1979, ‘Models of Program Logic’. In: Proc. of the 20th Annual Sym. on the

Foundations of Computer Science (FOCS-79). pp. 115–122.
Quillian, M. R.: 1967, ‘Word Concepts: A Theory and Simulation of Some Basic Capabilities’.

Behavioral Science 12, 410–430. Republished in (Brachman and Levesque, 1985).
Sattler, U.: 1996, ‘A Concept Language Extended with Different Kinds of Transitive Roles’.

In: G. Görz and S. Hölldobler (eds.): Proc. of the 20th German Annual Conf. on Artificial
Intelligence (KI’96), Vol. 1137 of Lecture Notes In Artificial Intelligence. Springer-Verlag.

Savitch, W. J.: 1970, ‘Relationship between Nondeterministic and Deterministic Tape Com-
plexities’. Journal of Computer and System Science 4, 177–192.

Schaerf, A.: 1993, ‘On the Complexity of the Instance Checking Problem in Concept Lan-
guages with Existential Quantification’. Journal of Intelligent Information Systems 2,
265–278.

Schild, K.: 1991, ‘A Correspondence Theory for Terminological Logics: Preliminary Report’.
In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91). pp. 466–471.

Schild, K.: 1994, ‘Terminological Cycles and the Propositional �-Calculus’. In: J. Doyle, E.
Sandewall, and P. Torasso (eds.): Proc. of the 4th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR-94). pp. 509–520, Morgan Kaufmann.

studia--final-complete.tex; 14/08/2001; 13:30; p.32

Tableau Algorithms for Description Logics 33

Schmidt-Schauß, M.: 1989, ‘Subsumption in KL-ONE is Undecidable’. In: R. J. Brachman,
H. J. Levesque, and R. Reiter (eds.): Proc. of the 1st Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR-89). pp. 421–431, Morgan Kaufmann.

Schmidt-Schauß, M. and G. Smolka: 1991, ‘Attributive Concept Descriptions with Comple-
ments’. Artificial Intelligence Journal 48(1), 1–26.

Spaan, E.: 1993, ‘The Complexity of Propositional Tense Logics’. In: M. de Rijke (ed.):
Diamonds and Defaults. Kluwer Academic Publishers, pp. 287–307.

Stirling, C.: 1992, ‘Modal and Temporal Logic’. In: S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum (eds.): Handbook of Logic in Computer Science. Clarendon Press, pp. 477–563.

Tobies, S.: 1999, ‘A PSPACE Algorithm for Graded Modal Logic’. In: Proc. of the 13th Conf.
on Automated Deduction (CADE-16), Vol. 1632 of Lecture Notes in Computer Science.
Springer-Verlag.

Van der Hoek, W. and M. De Rijke: 1995, ‘Counting Objects’. Journal of Logic and
Computation 5(3), 325–345.

Vardi, M. Y. and P. Wolper: 1986, ‘Automata-theoretic Techniques for Modal Logics of Pro-
grams’. Journal of Computer and System Science 32, 183–221. A preliminary version
appeared in Proc. of the 16th ACM SIGACT Symp. on Theory of Computing (STOC’84).

studia--final-complete.tex; 14/08/2001; 13:30; p.33

studia--final-complete.tex; 14/08/2001; 13:30; p.34

