
CSE 3461 F10

Widgets

2

Outline
• What is a widget?
• Buttons
• Combo boxes
• Text components
• Message boxes

3

• A self-contained screen object
• Also called a control
• Examples of widgets:

– buttons, check boxes, lists, scrollbars

What is a Widget?

4

Properties of Widgets

• A widget is usually manipulable
– it has some behaviour, meaning that it responds to the

user’s actions on them
• visually, by changing their appearance
• auditorially, by producing a sound

• Widgets are used for both input and output
– For input: user provides information to application,

specifies commands to be performed
– For output: application provides information to user

(such as the application status)
• A widget may contain other widgets

5

Widgets are Important

• Widgets:
– are the most obvious visual contribution of

GUIs
– are the basic building blocks of graphical user

interfaces (GUIs)
– provide a means of “communication”

between users and software

6

Using Widgets

• can make use of pre-defined widgets or create
new ones
– a set of pre-defined widgets is included in the user

interface toolkit (such as Swing)
– sometimes referred to as the “set of canned controls”

• user interface toolkit also provides:
– a mechanism to display widgets (layout

management)
– a means to design new widgets

7

Using Widgets

• Design questions
– what widget (or set of widgets) is appropriate

for this task?
– what layout is appropriate for these widgets

• given the available screen real estate
– Is this widget intuitive to use?

• does it make use of metaphors of physical controls
from the real-world?

8

Outline
• What is a widget?
• Buttons
• Text components
• Combo boxes
• Message boxes

9

Imperative Controls

• typically, imperative control that says:
“take this action and take it immediately”
– the recipient of the action might be already implied

• e.g., the recipeint of the “close” on the toolbar is always the
toolbar’s window

– the recipient might be modifiable
• e.g., the recipient of the “bold” command in a word

processing application has a default recipient, but it can be
changed

• imperative control usually has a <verb> or a
<verb> <noun> structure

10

Push Buttons

• The most common type of button
• Identified by visual features that suggest

pressability
– simulated 3D raised aspect

• shadow on right and bottom; highlight on top and left
• shows whether the button is raised or indented

– buttons might also be “painted” on the screen
• they don’t actually “move” when clicked
• this provides poor visual information

11

Push Buttons

• A button is pushed to invoke a command
– with mouse:

command executes as soon as the user clicks (a
mouse click is the sum of mouse pressed and
released; as opposed to mouse press or mouse
release) ActionListener

– keyboard:
button needs focus, command executes with key
press (as opposed to key release)

• Button needs to indicate to the semantics
of the command that it invokes
– it can do this with an icon, text, or both

12

Examples of Push Buttons

Grouping Menu Toolbar

Push button Push buttonPush button

13

Three Devices for Organizing
Push Buttons
• Groupings:

– one or more buttons in proximity
– meaning signaled by text or icon

• Menus:
– a collection of buttons in a list
– the list appears and disappears

• dependent upon a button action
– meaning typically signaled by text or icon

• relative position in list carries meaning too

14

Three Devices for Organizing
Push Buttons
• Toolbars:

– a collection of buttons, typically organized
horizontally

– the collection is persistent
– appropriate for commonly used functions

(we’ll contrast later with menus)
– meaning typically signaled by an icon

• text is less opaque, but this is a compromise to cope
with reduced screen real estate

15

Butcons

• butcon = half button, half icon
• used in toolbars
• clues about its pressability removed

– information that it is pressable becomes apparent only when
pointed at

– butcons are more difficult than buttons for newcomers
• In theory, butcons easy to use:

– always visible (therefore easy to memorize)
– requires less time, dexterity than drop-down menu
– inextricably linked to toolbars
– make use of icons, which can be difficult to decipher

• ToolTips (rollovers) are a solution to this problem

16

Examples

DemoBasicV4

DemoBasicButton

17

Examples

DemoIconButton

DemoDisabledButton

18

Examples

DemoButtonMnemonic

19

Push
button

Radio
button

Check
box

Modal
button

Selection Control

Selection Controls

DemoButtons

20

Radio Buttons

• Used to present a set of mutually-exclusive
options (the domain of options)

• Come in groups of two or more
– a single radio button is undefined

• Require a substantial amount of screen
real estate
– this use of space must be justified

• E.g., it is necessary to show the user the fill set of
available choices

21

Radio Buttons

• The domain of options must be:
– finite
– small
– mutually exclusive

• The name “radio button” is derived from
the selector buttons used to select pre-set
radio stations

22

Radio Button Example

Three mutually-exclusive options

23

Radio Button Example

In DemoButtons
 smallButton = new JRadioButton("Small");
 mediumButton = new JRadioButton("Medium");
 largeButton = new JRadioButton("Large");
 mediumButton.setSelected(true);

need to create a multiple-exclusion scope for this set of buttons:
 ButtonGroup sizeGroup = new ButtonGroup();
 sizeGroup.add(smallButton);
 sizeGroup.add(mediumButton);
 sizeGroup.add(largeButton);

• need to add each button to an intermediate container (not the group)
• need to register an ActionListener on each button

24

Check boxes

• One of the first visual controls invented
• Used to select or deselect an option
• The check mark provides feedback
• Primarily text-based

– the graphic supports the text, not the other
way around

25

push button  butcons
checkbox  ??
• The push button evolved into the butcon

– its text was replaced with an icon
– it was migrated on the toolbar

• What is the equivalent for a check box?
– if we press a button and it stays recessed

(“pushed in”)
– the button latches
– this is the same as a check box
– a latching butcon is equivalent to a checkbox
– allows us to dispense with text

26

Check boxes

• Checkboxes are appropriate when:
– the feature or characteristic has precisely two states

(e.g., lightbulb = on | off)
– States are appropriately described as being

“enabled”/”disabled” or “on”/ “off”
• Checkboxes are inappropriate when:

– the feature or characteristic has more than two states
(e.g., season = spring | summer | autumn | winter)

– enabled/on and disabled/off are inappropriate
descriptions of the states (e.g., gender = male |
female)

27

Check box Example

Checked = Enable “show windows in taskbar”
Unchecked = Disable “show windows in taskbar”

28

Check box Example

• In DemoButtons
 italicCheckBox = new JCheckBox("Italic");

 boldCheckBox = new JCheckBox("Bold");

• need to add each check box to an intermediate container; don’t need
ButtonGroup, like radio buttons

• need to register an ItemListener on each button
• need to implement the method itemStateChanged, invoke the method

isSelected() on the check box instance

29

Modal Buttons

• Also called flip-flop button
• Used to select from multiple options

– A hybrid of a push button and a radio button
• Looks like a push button

– When you push it, the selected option changes
– Should the user interpret the button text as

• a description of the currently-selected option
• a description of the option that will be selected if the button

is pushed
• Need to spell it out clearly

30

Modal Button Example

• In DemoButtons
 showHideButton = new JToggleButton("Hide");

• The text on the button is the button’s action command
• register an ActionListener on the button
• all instances of ActionEvent that are generated by the toggle button have

an associated action command
• use the method getActionCommand() to determine what it is

31

Java’s Button Classes

AbstractButton

JButton

JCheckBox

JRadioButton

JCheckBoxMenuItem

JRadioButtonMenuItem

JToggleButton

Can be included
in a menu…

need to be added to a
ButtonGroup in order to
implement mutual exclusivity

32

Outline
• What is a widget?
• Buttons
• Combo boxes
• Text components
• Message boxes

33

Selection Control, Part II

Consider the interface to DemoButtons
Suppose we want to present a variety of font sizes,
and a variety of font types?

34

The Solution is to Use Combo Boxes

Combo
box

Combo
box

DemoComboBox

35

• An alternative to radio buttons
– Appropriate when we have a large number of

mutually-exclusive options
• Advantage over radio buttons

– More choices can be displayed in less screen space
• Disadvantage over radio buttons

– Choices are not displayed until combo box is selected

Combo Boxes

36

Combo Box Example

• In DemoComboBox
final String[] SZ

= { "10", "14", "18", "22", "26", "32", "38", "48" };

sizeCombo = new JComboBox(SZ);
fontCombo = new JComboBox();

• for fontCombo, need to add the items to the list

 for (int i = 0; i < fontList.length; ++i)
 fontCombo.addItem(fontList[i].getName());

• register an ActionListener on each combo box
• selections from the list will generate an ActionEvent
• use the method getSelectedItem() to determine which list element was selected

37

Outline
• What is a widget?
• Buttons
• Combo boxes
• Text components
• Message boxes

38

Types of Text Components

• Output components
– cannot be edited

• Labels, Labeled borders (JLabel, TitledBorder)
• Tool tips, Message Boxes

• Input/output components
– can be edited

• Text fields, Text areas, Editable combo boxes
• Dialog boxes

39

Labels: Example

Label Combo box

Modal button

Label

40

Labels

• Create using JLabel
• Do not react to input events, cannot get keyboard focus
• Used to display information

– in particular, placed adjacent to a component that has a
keyboard alternative but can’t display it

• Position is determined by Layout Manager
• Advantage:

– The information it provides can be useful; aid user’s
performance of task

• Disadvantage:
– Uses screen real estate
– Poor wording may be worse than none at all

41

Labeled Borders: Example

Labeled border

This group pertains
to Colors

Labeled border

This group
pertains to Links

42

Labeled Borders

• The setBorder method is defined for all instances of
JComponent
– Used to create visual clue about groupings
– A label for the grouping is optional

• The parameter is an instance of a Border
• Border is an interface

– AbstractBorder is an abstract class that implements it
– TitleBorder extends AbstractBorder

E.g., in DemoButtons:
JPanel sizeGroupPanel = new JPanel();
sizeGroupPanel.setBorder(

new TitledBorder(new EtchedBorder(), "Size"));

43

Quick Note About Groupings

• Grouping can reduce cognitive load
– E.g., consider 12 components:

• With borders around each of 3 groupings, each with 4
components, the user identifies the group first, then the item
within the group (two-step process)

• Without grouping, user must locate item from among 12
items (this is more difficult!)

• Grouping can have disadvantages:
– Uses screen real estate
– Organization of components requires knowledge of

task domain
– Poor grouping may be worse than none at all

44

Text Fields and Text Areas

• Different types:
– Text Field: single line
– Text Area: multiple lines
– The abstract class JTextComponent has the

subclasses JTextField, JTextArea
• Challenges for design:

– How to validate the text that has been input?
– How to navigate within and between text

elements?

45

• Similar to a combo box, except that user
may also enter text directly

• Same challenges as text fields and areas
– validation, navigation

• Editable and non-editable combo boxes
are both instantiated from JComboBox
– use the methods: setEditable(true),
setEditable(false)

Editable Combo Boxes

46

Navigation

• All components have a focus state
– The possible focus states are in focus or out of focus
– For a key press to affect a component, the component

must have focus
– Visual clues are given to show which component has

focus
• I-beam cursor appears, special highlighting

• Every time the focus changes, a FocusEvent is
generated
– a component loses focus, another gains focus,

47

Navigation

• A component generally gains the focus by the
user:
– clicking it
– tabbing to it, or
– otherwise interacting with a component.

• A component can also be given the focus
programmatically
– e.g., a component can request the focus when its

containing frame or dialog is made visible
• The focus traversal policy determines the order in

which a group of components are navigated

48

DemoLookAndFeel.java

Metal (java) Motif Windows

49

Analysis
Exercise

How might the
organization of
these widgets be
improved?

50

Outline
• What is a widget?
• Buttons
• Combo boxes
• Text components
• Message boxes

51

Dialog box Invalid input

Message box

Message Box: Example

52

Message Boxes

• A message box (aka dialog box) is a popup
window

• Primary purpose is to govern the interaction
– presents a text message to the user
– seeks input for confirmation (and to close the box)

• Functions to:
– Notify the user of a problem (e.g., invalid choice)
– Notify the user of potentially destructive outcome (e.g.,

overwrite a file)
– Provide information

53

Message Boxes (2)
• Advantage

– Comprehensive messages are possible
(unlike tool tips)

• Disadvantage
– Slows interaction (because underlying

thread is halted until confirmation is
received)

54

Behaviour of Message Boxes
• Message boxes demand immediate

attention
– can’t close the message box (user is required

to make a choice or to provide
confirmation)

– user is not able to make use of other widgets

55

Input-Handling Techniques

1. For actions with serious consequences,
require an explicit button click or key press
before proceeding
(pressing Enter does not result in a default
action)

2. For invalid input, provide feedback (e.g.,
alarm tone or visual feedback)

3. Take advantage of user consistency (e.g.,
change the position of buttons from one
invocation to the next)

56

Hitting ENTER produces…

Button positions change from one invocation to next

Example

57

Example 4.6

DemoMessageBox.java

