
CH-1© Gunnar Gotshalks

Chat

A program to make Prolog input
more English like

A project from Clocksin and Mellish,
page 244 third edition

CH-2© Gunnar Gotshalks

The main program – chat

◊ The rule repeats itself until the user enters exactly "Stop."
 chat :- repeat

> Get a sentence from the user
 , readLine (Sentence)

> Obtain the semantic form, Clause, from the
external form, Sentence.

 , parse (Clause , Sentence , _)
> Determine the appropriate response.

 , respondTo (Clause)
> chat succeeds when the semantic form is stop

 , Clause = stop .

CH-3© Gunnar Gotshalks

readLine (Sentence)

◊ Read a sentence as a list of words, where each word is
the list of characters in ASCII numeric code.

◊ Split off the periods, question marks and apostrophes

◊ Create the corresponding list of atoms
 readLine (Sentence) :- readCharLists (Words)

 , morphs (Words , Sentence) , ! .

◊ User types John is a person.

◊ Words ==> [[74, 111, 104, 110], [105, 115], [97],
 [112, 101, 114, 115, 111, 110, 46]]

◊ Sentence ==> [John , is , a , person , .]
> John is a constant not a variable

CH-4© Gunnar Gotshalks

readCharLists (Words)

◊ Read in a list of words from the keyboard and convert
each word to a list of character lists
 readCharLists ([Word | MoreWords]) :-

> Read a word
 readWord (Word , TerminatingChar)

> end of line (ASCII 10 is newLIne) signals the end
of the list of words

 , ((TerminatingChar = 10) , MoreWords = []
 ; readCharLists (MoreWords)).

◊ MoreWords is a hole
> see parts assembly example

CH-5© Gunnar Gotshalks

◊ Read in a word from the keyboard
 readWord (Word , TerminatingChar) :- get0 (C)

> Check for end of line or space character
 , ((C = 10 ; C = 32)

> Handle eol and space character cases
 , TerminatingChar = C , Word = []

> Character in a word, get the rest of the word
 ; readWord (RestOfWord ,

 TerminatingChar)
 , Word = [C | RestOfWord]) .

readWord(Word, CharList)

CH-6© Gunnar Gotshalks

Morphs (WordList , AtomList)

◊ Convert list of words (as character lists from
readCharLists, for example) to list of atoms, applying
morphological rules to split off punctuation and the
possessive " 's ".

 morphs ([] , []).
 morphs ([Word | RestOfWords] , Atoms) :-
 morph (Word , Atom)
 , morphs (RestOfWords , RestOfAtoms)
 , append (Atom , RestOfAtoms , Atoms) .

CH-7© Gunnar Gotshalks

morph (Word , ItsAtoms)

◊ Convert one word, as a list of characters, to its corresponding
atoms.

> More than one atom occurs when punctuation is
split off, as punctuation is treated as an atom
separately from a word.

 morph ([] , []) .
 morph (Word , ItsAtoms) :-

> Use the available rules for morphing a word to a
list of component character lists

 morphrules (Word , WordComponents)
> Convert each list of character codes to its

corresponding atom
 , maplist (name , ItsAtoms , WordComponents) .

CH-8© Gunnar Gotshalks

morphrules (CharList , ComponentLists)

◊ ComponentLists is a sequence of sublists of CharList
determined by the splitOff rules
 morphrules (CharList , ComponentLists) :-

> Do any split off rules apply?
 (append (X , Y , CharList)
 , splitOff (Y)
 , ComponentLists = [X , Y])

> Nothing to split off so only one sublist
 ; ComponentLists = [CharList] .

CH-9© Gunnar Gotshalks

splitOff (String)

◊ List of strings that are to be split off from words

> Apostrophe s
 splitOff ("'s") .

> Question mark
 splitOff ("?") .

> Period
 splitOff (".") .

CH-10© Gunnar Gotshalks

maplist (P , Arg1 , Arg2)

◊ maplist is a predicate that is the equivalent to the Lisp
mapcar but restricted to exactly one argument

◊ maplist applies the predicate P to every item in Arg1 and
the result is the corresponding item in Arg2.
 maplist (_ , [] , []).
 maplist (P , [H1 | T1] , [H2 | T2]) :-

> Q is the predicate P (H1 , H2). The operator =..
defines the correspondence of the compound
term Q with the list form on the the right.

 Q =.. [P, H1, H2]
 , call (Q)
 , maplist (P , T1 , T2) .

CH-11© Gunnar Gotshalks

Parse rules

◊ The parse rules analyse the list of atoms in a sentence.
The relevant parts are extracted and rearranged for the
respondTo rules.

 parse (semantic_sentence_representation
 , the_sentence_to_parse
 , remainder_of_sentence)

> First rule creates the term stop to terminate the
program.

 parse (stop , ['Stop' , '.'] , []) .

> Last rule matches everything to create the term
noparse for the "Can't parse that" response

 parse (noparse , _ , _) .

CH-12© Gunnar Gotshalks

Parsing "_ is a _."

◊ A rule to parse sentences of the form
 John is a person.

◊ The parsing part of the rule
 parse (Clause) -->

 thing (Name) , [is , a] , type (T) , ['. '] .

◊ Where
 thing (Name) --> [Name] .
 type (T) --> [T] .

◊ This does not look like Prolog syntax

◊ What is happening?

CH-13© Gunnar Gotshalks

Parse rule translations

◊ The previous syntax is in the library of predicates that
comes with Edinburgh Prolog

◊ The predicates define a correspondence with the previous
syntax and pure prolog syntax
 Why do we need the predicates?

◊ Writing parsing rules in pure Prolog is tedious

CH-14© Gunnar Gotshalks

Parsing "P is a T."

◊ Syntax as entered in chat
 parse (Clause) --> [P] , [is , a] , [T] , ['.'] .

◊ Its equivalent in Prolog
 parse (Clause , S , Srem) :- det1 (S , S0)

 , det2 (S0 , S1) , det3 (S1 , S2) , det4 (S2 , Srem) .

◊ Query: parse(Clause, [John, is, a, person, '.'], _)
 det1 ([P | St] , St). P = John St = [is , a , person , '.']
 det2 ([is , a | St] , St). St = [person, '.']
 det3 ([T | St] , St). T = person St = ['.']
 det4 (['.' | St] , St). St = [] ==> Srem = []

compared to the translation

Looks fairly straight forward

CH-15© Gunnar Gotshalks

Parsing "_ is a _." and translation

 parse (Clause) -->
 thing (Name) , [is , a] , type (T) , ['. '] .

 thing (Name) --> [Name] .
 type (T) --> [T] .

◊ In Prolog is the following
 parse (Clause , S , Srem) :-

 thing (Name , S , S0) , det5 (S0 , S1)
 , type (T , S1 , S2) , det6 (S2 , Srem).

 thing (Name , S , Srem) :- det7 (S , Srem).
 type (T , S , Srem) :- det8 (S , Strem).

 det5 ([is , a] | St] , St). det6 (['.'] | St] , St).
det7 ([Name | St] , St). det8 ([T | St] , St).

compared to the translation

Looks fairly straight forward

CH-16© Gunnar Gotshalks

Semantic representation of a parse

◊ We can parse a sentence. So what?

◊ Need to get a semantic representation for the parse so
the respondTo can work.

◊ That is the role played by the Clause variable in the parse
rules

CH-17© Gunnar Gotshalks

Parsing "_ is a _." and semantics

◊ Query:
 parse (Clause , [John , is , a , person , '.'] , _).

◊ The parsing part of the rule
 parse (Clause) -->

 thing (Name) , [is , a] ,
 type (T) , ['.']

◊ The semantic part of the rule
 , { Clause =.. [T , Name]

 , ! } .

 {...} indicates do not
translate ..., keep as it
is, in the translated rule

> Makes the binding
Name = John
T = person

> Makes the binding
Clause
 = person (John)

CH-18© Gunnar Gotshalks

thing (X) & type (X)

◊ For things we want to check they begin with an upper
case letter (capital letter)
 thing (Name) --> [Name] , { capital (Name) } .

◊ For types we want to check that it begins with a lower
case letter.
 type (T) --> [T] , { not (capital (T)) } .

◊ Rule for determining if a letter is a upper case (capital)
letter or not.

> Character withASCII code less than 96 means it
is an upper case letter.

 capital (Name) :- name (Name , [F |_]) , F < 96 .

CH-19© Gunnar Gotshalks

Parsing "A _ is a _."

◊ The complete rule for parsing sentences like the following
 A woman is a person.

> The parsing part
 parse(Clause) --> ['A'] , type (T1) , [is , a]

 , type (T2) , ['. ']
> The semantic part

 , { Head =.. [T2, X] , Condition =.. [T1, X]
 , Clause = (Head :- Condition) , ! } .

◊ The following bindings occur
 T1 = woman T2 = person parse

Head = person (X) semantics, X is a variable
Condition = woman (X) semantics, same X
Clause = person (X) :- woman (X) semantics

CH-20© Gunnar Gotshalks

Parsing "Is _ a _?"

◊ The complete rule for parsing sentences like the following
 Is Mary a person?

> The parsing part
 parse(Clause) --> ['Is'] , thing(Name) , [a]

 , type(T) , ['?']
> The semantic part

 , { Goal =.. [T, Name] , Clause = ('?-' (Goal)) , ! } .

◊ Using the example the following bindings occur
 Name = Mary T = person parse

Goal = person (Mary) semantics
Clause = ?-(person (Mary)) semantics

◊ ?- makes Clause functor unique, correct respondTo is used.

CH-21© Gunnar Gotshalks

RespondTo

◊ The following two clauses are the response to stopping
the program and to not finding a parse.

> The argument is the semantic representation
formed in the semantic part of parse rules

 respondTo (stop) :- write ('All done.') , nl , ! .

 respondTo (noparse) :-

 write ('Can''t parse that.') , nl , ! .

CH-22© Gunnar Gotshalks

RespondTo – enter into database

◊ The following matches all clauses, so it would be last on
the list

> It adds the clause to the database – at the
beginning

 respondTo (Clause) :- asserta (Clause)
 , write ('Ok') , nl , ! .

◊ assertz(Clause) – add at the end of the database

◊ retract(X) – find a clause in the database that matches
the argument and remove it from the database

CH-23© Gunnar Gotshalks

RespondTo – Yes/No query

◊ Match functor ?- and argument Goal.
> ?- is used to provide a respondTo to correspond

to a particular parse rule.
> The operator -> tries to establish the goals to its

left. If they succeed, then the goals to its right
are attempted

 respondTo ('?-' (Goal)) :-
 (Goal -> write ('Yes') ; write ('No'))
 , ! , nl , nl .

◊ In the case of the "Is Mary a person?" query we only
need a yes and no answer.

