Accumulators
More on Arithmetic
and
Recursion

© Gunnar Gotshalks Acc-1

listlen (L, N)

¢ Lis alist of length N if ...
listlen ([], 0).

listten ([HIT],N):- listlen(T,N1),Nis N1 +1.

> On searching for the goal, the list is reduced to

empty

> On back substitution, once the goal is found,
the counter is incremented from 0

¢ Following is an example sequence of goals (left hand
column) and back substitution (right hand column)

(a,b,c], N). N <==N1 +1

listlen(
listlen(
listlen(
listlen(

© Gunnar Gotshalks

(b, c],N1).
(¢], N2).

], N3).

N1 <==N2 + 1
N2 <== N3 + 1
N3<==0

Acc-2

Abstract the counter

¢ The following abstracts the counter part from listlen.
addUp (0).
addUp (C) :- addUp (C1),CisC1 +1.

0 Notice the recursive definition occurs on a counter one
smaller than in the head.

© Gunnar Gotshalks Acc-3

Count Up

¢ An alternate method is to count on the way to the fixed point
value in the query

¢ The auxiliary counter accumulates the result on the way to the
goal.
adder (C) :- adder (0, C). ;Introduce auxiliary counter
adder (C,C) :- nl,write('a"').

> The goal is reached when the auxiliary counter
reaches the fixed point count value

adder (Acc1,C) :- write('b"'), Acc2is Accl + 1
, adder (Acc2, C).

> The predicates in black always succeed, side effect is
to write to the terminal — can see order of rule
execution

© Gunnar Gotshalks Acc-4

listLen(L,N) — 2

¢ We can define list length using an accumulator
listin(L,N) :- lenacc(L,0,N).
> Introduce the auxiliary counter — length of list L
when added to the accumulator is N
lenacc ([],A,A).

lenacc ([HIT],A,N) - AlisA +1
,lenacc (T, A1, N).

¢ Following is a sequence of goals

listin ([a,b,c], N).

lenacc([a, b,c],0,N). N<==N1
lenacc ([b,c],1,N1). N1 <== N2
lenacc ([c],2,N2). N2 <== N3
lenacc ([],3, N3). N3 <==3

© Gunnar Gotshalks Acc-5

Sum a List of Numbers — no accumulator

¢ sumlList(List, Total) asserts List is a list of numbers
and Total = +/ List .

sumList([], 0).

sumList([First | Rest], Total) :-
sumList(Rest, Rest_total)

, Total is First + Rest_total.

© Gunnar Gotshalks Acc-6

Sum a List of Numbers — with accumulator

¢ sumlList(List, Total) asserts List is a list of numbers
and Total = +/ List .

» Use an accumulator
» Here sumList asserts Total = (+/List) + Acc

sumList(List, Total) :- sumList(List, 0, Total).
sumList([], Acc, Acc).

sumList([First| Rest], Acc, Total) :-
NewAcc is Acc + First
, sumList(Rest, NewAcc, Total).

© Gunnar Gotshalks Acc-7

A base case stops recursion

0 A base case is one that stops recursion

» This is a more general notion than the smallest
problem.

¢ Generate a sequence of integers from 0 to N, inclusive.
» Need to stop recursion when we have reached N.

numinRange(X,N) :- addUpToN(0,X,N).
addUpToN(X,X,_). < Base case, no recursion
addUpToN(Acc,X,N) :- Acc<N

Neod oy t , Acc1is Acc + 1
eed guard to preven
selecting this rule to , addUpToN(Acc1,X;N).

prevent recursion

© Gunnar Gotshalks Acc-8

Accumulator — Using vs Not Using

0 The definition styles reflect two alternate definitions for counting
» Recursion — counts (accumulates) on back substitution.
> Goal becomes smaller problem
> Do not use accumulator
» lteration — counts up, accumulates on the way to the goal
> Accumulate from nothing up to the goal
> Goal “counter value” does not change

¢ Some problems require an accumulator
» Parts explosion problem
» Need intermediate results during accumulation
> Partial sums of a list of numbers

© Gunnar Gotshalks Acc-9

Factorial using recursion

¢ Following is a recursive definition of factorial
Factorial (N) = N * Factorial (N—-1)

factr (N, F) -- F is the factorial of N

factr (0,1).

factr(N,F) - Jis N-1 , factr(J,F1)
,F is N*F1.

¢ The problem (J, F1) is a smaller version of (N , F)
¢ Work toward the fixed point of a trivial problem

¢ Does not work for factr (N ,120) and factr (N, F).

» Cannot do arithmetic Jis N—1 because N is
undefined.

© Gunnar Gotshalks Acc-10

Factorial using iteration — accumulators

¢ An iterative definition of factorial

facti(N,F) :- facti(0,1,N,F).

facti(N,F,N, F).

facti(lI,Fi,N,F) :- invariant (I, Fi,J, Fj)
, facti(J,Fj,N, F).

invariant (I ,Fi,J,Fj) - Jis I+1, Fj is J *Fi.

¢ The last two arguments are the goal and they remain the
same throughout.

¢ The first two arguments are the accumulator and they start
from a fixed point and accumulate the result

¢ Works for queries factr (N ,120) and factr (N, F)
because values are always defined for the is operator.

© Gunnar Gotshalks Acc-11

Fibonacci — Ordinary Recursion

¢ Following is a recursive definition of the fibonacci series.
For reference here are the first few terms of the series

Index-0 1 2 3 4 56 7 8 910 11 12
Value-11 2 3 5 8 13 21 34 55 89 144 233

Fibonacci (N) = Fibonacci (N-1)
+ Fibonacci (N - 2).

JF) - N1is N—1, N2 is N—2
. fib (N1, F1), fib (N2, F2)
" F is F1+F2.

¢ Does not work for queries fib (N,8) and fib (N, F)
» Values for is operator are undefined.

© Gunnar Gotshalks Acc-12

Fibonacci — Tail Recursion

¢ A tail recursive definition of the fibonacci series
> Tail recursion is equivalent to iteration

fibt (0, 1).
fibt (1,1).
fibt (N, F) :- fibt(2,1,1,N,F).

fibt (N, Last2,Last1 ,N,F) :- F is Last2 + Last1.
fibt (1,Last2,Last1,N,F) - Jis | +1

, Fi is Last2 + Last1

, fibt (J,Lastl,Fi, N, F).

¢ Works for queries factr (N, 120) and factr (N, F)
» values are always defined for is operator.

© Gunnar Gotshalks Acc-13

Parts Explosion — The Problem 1

¢ Parts explosion is the problem of accumulating all the parts for a
product from a definition of the components of each part
¢ Consider a bicycle we could have
> the following basic components
basicPart(spokes). basicPart(rim). basicPart(tire).
basicPart(inner_tube). basicPart(handle_bar).
basicPart(front_ fork). basicPart(rear_fork).
> the following definitions for sub assemblies
assembly(bike, [wheel, wheel, frame]).
assembly(wheel, [spokes, rim, wheel_cushion]).
assembly(wheel_cushion, [inner_tube, tire]).
assembly(frame, [handle_bar, front_fork, rear_fork]).

© Gunnar Gotshalks Acc-14

Parts Explosion — The Problem 2

¢ We are interest in obtaining a parts list for a bicycle.
[rear_ fork , front_ fork , handle_bar , tire
, inner_tube , rim, spokes , tire, inner_tube , rim
, Spokes]
> We have two wheels so there are two tires,
inner_tubes, rims and spokes.

¢ Using accumulators we can avoid wasteful re-computation
as in the case for the ordinary recursion definition of the
fibonacci series

© Gunnar Gotshalks Acc-15

Parts Explosion — Accumulator 1

¢ partsof (X ,P) — P is the list of parts for item X

0 partsacc (X ,A,P)—parts_of (X)IlA=P. |l is catenate
partsof (X, P) :- partsacc (X, [],P). L(mathappend)

> Basic part — parts list contains the part
partsacc (X, A,[XI1A]) :- basicPart (X).

> Not a basic part — find the components of the part
partsacc (X, A, P) :- assembly (X, Subparts),

> parsacclist — parts_of (Subparts) Il A=P
partsacclist (Subparts , A, P).

© Gunnar Gotshalks Acc-16

Parts Explosion — Accumulator 2

0 parsacclist (ListOfParts , AccParts , P)
— parts_of (ListOfParts) Il AccParts =P

> No parts = no change in accumulator
partsacclist ([], A, A).

partsacclist ([Head | Tail], A, Total) :-
> Get the parts for the first on the list
partsacc (Head , A , HeadParts)

> And catenate with the parts obtained from the
rest of the ListOfParts

, partsacclist (Tail , HeadParts , Total).

© Gunnar Gotshalks Acc-17

Reverse a list with an accumulator

¢ Define the predicate reverse (List , ReversedList) that
asserts ReversedList is the List in reverse order.

reverse (List , Reversed) :-
reverse (List,[], Reversed).
reverse ([], Reversed , Reversed).

reverse ([Head | Tail]) Il SoFar = Reversed

reverse ([Head | Tail], SoFar , Reversed) :-
reverse (Tail , [Head | SoFar], Reversed).

© Gunnar Gotshalks Acc-18

Reverse a list without accumulator

¢ Define the predicate reverse (List , ReversedList) that
asserts ReversedList is the List in reverse order.

reverse ([]1,][]) -

reverse ([Head | Tail], ReversedList) :-
reverse (Tail , ReversedTail),
append (ReversedTail , [Head], ReversedList .

¢ Note the extra list traversal required by append compared
to the accumulator version.

© Gunnar Gotshalks Acc-19

Difference Lists and Holes

¢ The accumulator in the parts explosion program is a stack
» |[tems are stored in the reverse order in which they
are found
¢ How do we store accumulated items in the same order in
which they are formed?

» Use a queue

¢ Difference lists with holes are equivalent to a queue

© Gunnar Gotshalks Acc-20

Examples for Holes

¢ Consider the following list
[a,b,c,d | X]
> X is a variable indicating the tail of the list. It is
like a hole that can be filled in once a value for X
is obtained
O For example
Res =[a,b,c,dI| X], X =[e,f].
> Yields
Res=[a,b,c,d,e,f]

© Gunnar Gotshalks Acc-21

Examples for Holes — 2

¢ Or could have the following with the hole going down the
list
Res =[a,b,c,d | X]
> more goal searching gives X =[e,f Y]
> more goal searchinggives Y =[h,i,]j]
> Back substitution Yields
Res=[a,b,c,d,e,f,h,i,]]

© Gunnar Gotshalks Acc-22

Difference Lists

ST E1 S2 E2

(1) concat(S1-E1,S2-E2, S1 - E2) withE1 =52

L1=[A,B,C] =[A,B,C | R1]-R1
L2=[D,E]=[D,E | R2]-R2

Pattern match (1) with (2)

(2) concat((A,B,C I R1]- R1,[D,EIR2]-R2,CL)
Using E1 = S2 we get

R1=[D,E |IR2]
CL=[A,B,C ,D,E IR2] - R2

© Gunnar Gotshalks Acc-23

Parts Explosion — Difference List 1

¢ partsofd (X, P) — P is the list of parts for item X
¢ partsdiff (X, Hole, P) —parts_of (X) || Hole =P

> Hole and P are reversed compared to Clocksin
& Mellish (v5) to better compare with
accumulator version.

partsofd (X, P) :- partsdiff (X,[], P).

> Base case we have a basic part, then the parts
list contains the part

partsdiff (X, Hole, [X | Hole]) :- basicPart (X).

© Gunnar Gotshalks Acc-24

Parts Explosion — Difference List 2

> Not a base part, so we find the components of the
part

partsdiff (X, Hole, P) :- assembly (X, Subparts)
> parsdifflistd — parts_of (Subparts) Il Hole = P

, partsdifflist (Subparts , Hole , P).

© Gunnar Gotshalks Acc-25

Parts Explosion — Difference Lists 3

¢ parsdifflist (ListOfParts , Hole , P)
— parts_of (ListOfParts) || Hole = P
partsdifflist ([] , Hole , Hole).
partsdifflist ([Head | Tail], Hole , Total) :-
> Get the parts for the first on the list
partsdiff (Head , Hole1 , Total)

> And catenate with the parts obtained from the
rest of the ListOfParts

, partsdifflist (Tail , Hole , Hole1).

© Gunnar Gotshalks Acc-26

Compare Accumulator with Hole

partsof (X, P) :- partsacc (X, [], P). Accumulator
partsofd (X ,P) :- partsdiff (X, [], P). Difference/Hole

partsacc (X, A ,[XIA]) :- basicPart (X).
partsdiff (X , Hole ,[X | Hole]) :- basicPart (X).

partsacc (X, A ,P) :- assembly (X, Subparts)
, partsacclist (Subparts, A ,P).

partsdiff (X , Hole ,P) :- assembly (X, Subparts)
, partsdifflist (Subparts , Hole , P).

© Gunnar Gotshalks Acc-27

Compare Accumulator with Hole — 2

partsacclist ([], A , A

).

partsdifflist ([] , Hole , Hole).

partsacclist ([Head | Tail]

s A

, Total)

:- partsacc (Head, |A| , HeadParts)

, partsacclist (Tail , HeadParts , Total).

partsdifflist ([Head | Tail],

Hole

, Total)

:- partsdiff (Head , Holel ,
, partsdifflist (Tail , |Hole

© Gunnar Gotshalks

Total)
, Holel).

Acc-28

