
Acc-1© Gunnar Gotshalks

Accumulators
More on Arithmetic

and
Recursion

Acc-2© Gunnar Gotshalks

listlen (L , N)

◊ L is a list of length N if ...
 listlen ([] , 0).
 listlen ([H | T] , N) :- listlen (T , N1) , N is N1 + 1.

> On searching for the goal, the list is reduced to
empty

> On back substitution, once the goal is found,
the counter is incremented from 0

◊ Following is an example sequence of goals (left hand
column) and back substitution (right hand column)

 listlen([a, b, c] , N). N <== N1 + 1
listlen([b, c] , N1). N1 <== N2 + 1
listlen([c] , N2). N2 <== N3 + 1
listlen([] , N3). N3 <== 0

Acc-3© Gunnar Gotshalks

Abstract the counter

◊ The following abstracts the counter part from listlen.
 addUp (0).
 addUp (C) :- addUp (C1) , C is C1 + 1.

◊ Notice the recursive definition occurs on a counter one
smaller than in the head.

Acc-4© Gunnar Gotshalks

◊ An alternate method is to count on the way to the fixed point
value in the query

◊ The auxiliary counter accumulates the result on the way to the
goal.
adder (C) :- adder (0 , C). ;Introduce auxiliary counter
adder (C , C) :- nl , write ('a ').

> The goal is reached when the auxiliary counter
reaches the fixed point count value

adder (Acc1 , C) :- write ('b ') , Acc2 is Acc1 + 1
 , adder (Acc2 , C).

> The predicates in black always succeed, side effect is
to write to the terminal – can see order of rule
execution

Count Up

Acc-5© Gunnar Gotshalks

listLen(L,N) – 2

◊ We can define list length using an accumulator
 listln (L , N) :- lenacc (L , 0 , N).

> Introduce the auxiliary counter – length of list L
when added to the accumulator is N

 lenacc ([] , A , A).
 lenacc ([H | T] , A , N) :- A1 is A + 1

 , lenacc (T , A1 , N).

◊ Following is a sequence of goals
 listln ([a , b , c] , N).

lenacc ([a , b , c] , 0 , N). N <== N1
lenacc ([b , c] , 1 , N1). N1 <== N2
lenacc ([c] , 2 , N2). N2 <== N3
lenacc ([] , 3 , N3). N3 <== 3

Acc-6© Gunnar Gotshalks

Sum a List of Numbers – no accumulator

◊ sumList(List, Total) asserts List is a list of numbers
and Total = + / List .

sumList([], 0).
sumList([First | Rest], Total) :-

 sumList(Rest, Rest_total)
 , Total is First + Rest_total.

Acc-7© Gunnar Gotshalks

Sum a List of Numbers – with accumulator

◊ sumList(List, Total) asserts List is a list of numbers
and Total = + / List .
» Use an accumulator
» Here sumList asserts Total = (+ / List) + Acc

sumList(List, Total) :- sumList(List, 0, Total).
sumList([], Acc, Acc).
sumList([First | Rest], Acc, Total) :-

 NewAcc is Acc + First
, sumList(Rest, NewAcc, Total).

Acc-8© Gunnar Gotshalks

A base case stops recursion

◊ A base case is one that stops recursion
» This is a more general notion than the smallest

problem.

◊ Generate a sequence of integers from 0 to N, inclusive.
» Need to stop recursion when we have reached N.

numInRange(X,N) :- addUpToN(0,X,N).
addUpToN(X,X,_).
addUpToN(Acc,X,N) :- Acc < N

 , Acc1 is Acc + 1
 , addUpToN(Acc1,X,N).

Base case, no recursion

Need guard to prevent
selecting this rule to
prevent recursion

Acc-9© Gunnar Gotshalks

Accumulator – Using vs Not Using

◊ The definition styles reflect two alternate definitions for counting
» Recursion – counts (accumulates) on back substitution.

> Goal becomes smaller problem
> Do not use accumulator

» Iteration – counts up, accumulates on the way to the goal
> Accumulate from nothing up to the goal
> Goal “counter value” does not change

◊ Some problems require an accumulator
» Parts explosion problem
» Need intermediate results during accumulation

> Partial sums of a list of numbers

Acc-10© Gunnar Gotshalks

Factorial using recursion

◊ Following is a recursive definition of factorial
 Factorial (N) = N * Factorial (N – 1)

 factr (N , F) -- F is the factorial of N
 factr (0 , 1).
 factr (N , F) :- J is N – 1 , factr (J , F1)

 , F is N * F1.

◊ The problem (J , F1) is a smaller version of (N , F)

◊ Work toward the fixed point of a trivial problem

◊ Does not work for factr (N ,120) and factr (N , F).
» Cannot do arithmetic J is N – 1 because N is

undefined.

Acc-11© Gunnar Gotshalks

Factorial using iteration – accumulators

◊ An iterative definition of factorial
 facti (N , F) :- facti (0 , 1 , N , F).

facti (N , F , N , F).
facti (I , Fi , N , F) :- invariant (I , Fi , J , Fj)
 , facti (J , Fj , N , F).

 invariant (I , Fi , J , Fj) :- J is I + 1 , Fj is J * Fi.

◊ The last two arguments are the goal and they remain the
same throughout.

◊ The first two arguments are the accumulator and they start
from a fixed point and accumulate the result

◊ Works for queries factr (N ,120) and factr (N , F)
because values are always defined for the is operator.

Acc-12© Gunnar Gotshalks

Fibonacci – Ordinary Recursion

◊ Following is a recursive definition of the fibonacci series.
For reference here are the first few terms of the series
 Index – 0 1 2 3 4 5 6 7 8 9 10 11 12

Value – 1 1 2 3 5 8 13 21 34 55 89 144 233
 Fibonacci (N) = Fibonacci (N – 1)

 + Fibonacci (N – 2).

 fib (0 , 1).
fib (1 , 1).
fib (N , F) :- N1 is N – 1 , N2 is N – 2
 , fib (N1 , F1) , fib (N2 , F2)
 , F is F1 + F2.

◊ Does not work for queries fib (N , 8) and fib (N , F)
» Values for is operator are undefined.

Acc-13© Gunnar Gotshalks

Fibonacci – Tail Recursion

◊ A tail recursive definition of the fibonacci series
> Tail recursion is equivalent to iteration

 fibt (0 , 1).
fibt (1 , 1).
fibt (N , F) :- fibt (2 , 1 , 1 , N , F).

 fibt (N , Last2 , Last1 , N , F) :- F is Last2 + Last1.
 fibt (I , Last2 , Last1 , N , F) :- J is I + 1
 , Fi is Last2 + Last1
 , fibt (J , Last1 , Fi , N , F).

◊ Works for queries factr (N , 120) and factr (N , F)
» values are always defined for is operator.

Acc-14© Gunnar Gotshalks

Parts Explosion – The Problem 1

◊ Parts explosion is the problem of accumulating all the parts for a
product from a definition of the components of each part

◊ Consider a bicycle we could have
> the following basic components

 basicPart(spokes). basicPart(rim). basicPart(tire).
 basicPart(inner_tube). basicPart(handle_bar).
 basicPart(front_ fork). basicPart(rear_fork).

> the following definitions for sub assemblies
 assembly(bike, [wheel, wheel, frame]).
 assembly(wheel, [spokes, rim, wheel_cushion]).
 assembly(wheel_cushion, [inner_tube, tire]).
 assembly(frame, [handle_bar, front_fork, rear_fork]).

Acc-15© Gunnar Gotshalks

Parts Explosion – The Problem 2

◊ We are interest in obtaining a parts list for a bicycle.
 [rear_ fork , front_ fork , handle_bar , tire

, inner_tube , rim , spokes , tire , inner_tube , rim
, spokes]

> We have two wheels so there are two tires,
inner_tubes, rims and spokes.

◊ Using accumulators we can avoid wasteful re-computation
as in the case for the ordinary recursion definition of the
fibonacci series

Acc-16© Gunnar Gotshalks

Parts Explosion – Accumulator 1

◊ partsof (X ,P) – P is the list of parts for item X

◊ partsacc (X , A , P) – parts_of (X) || A = P.
 partsof (X , P) :- partsacc (X , [] , P).

> Basic part – parts list contains the part
 partsacc (X , A , [X | A]) :- basicPart (X).

> Not a basic part – find the components of the part
 partsacc (X , A , P) :- assembly (X , Subparts) ,

> parsacclist – parts_of (Subparts) || A = P
 partsacclist (Subparts , A , P).

|| is catenate
(math append)

Acc-17© Gunnar Gotshalks

Parts Explosion – Accumulator 2

◊ parsacclist (ListOfParts , AccParts , P)
 – parts_of (ListOfParts) || AccParts = P

> No parts ⇒ no change in accumulator
 partsacclist ([] , A , A).

 partsacclist ([Head | Tail] , A , Total) :-
> Get the parts for the first on the list

 partsacc (Head , A , HeadParts)

> And catenate with the parts obtained from the
rest of the ListOfParts

 , partsacclist (Tail , HeadParts , Total).

Acc-18© Gunnar Gotshalks

Reverse a list with an accumulator

◊ Define the predicate reverse (List , ReversedList) that
asserts ReversedList is the List in reverse order.

reverse (List , Reversed) :-
reverse (List , [] , Reversed) .

reverse ([] , Reversed , Reversed) .

reverse ([Head | Tail]) || SoFar = Reversed
reverse ([Head | Tail] , SoFar , Reversed) :-

reverse (Tail , [Head | SoFar] , Reversed) .

Acc-19© Gunnar Gotshalks

Reverse a list without accumulator

◊ Define the predicate reverse (List , ReversedList) that
asserts ReversedList is the List in reverse order.

reverse ([] , []) .

reverse ([Head | Tail] , ReversedList) :-
reverse (Tail , ReversedTail) ,

 append (ReversedTail , [Head] , ReversedList .

◊ Note the extra list traversal required by append compared
to the accumulator version.

Acc-20© Gunnar Gotshalks

Difference Lists and Holes

◊ The accumulator in the parts explosion program is a stack
» Items are stored in the reverse order in which they

are found

◊ How do we store accumulated items in the same order in
which they are formed?
» Use a queue

◊ Difference lists with holes are equivalent to a queue

Acc-21© Gunnar Gotshalks

Examples for Holes

◊ Consider the following list
 [a , b , c , d | X]

> X is a variable indicating the tail of the list. It is
like a hole that can be filled in once a value for X
is obtained

◊ For example
 Res = [a , b , c , d | X] , X = [e , f].

> Yields
Res = [a , b , c , d , e , f]

Acc-22© Gunnar Gotshalks

Examples for Holes – 2

◊ Or could have the following with the hole going down the
list
 Res = [a , b , c , d | X]

> more goal searching gives X = [e , f | Y]
> more goal searching gives Y = [h , i , j]
> Back substitution Yields

Res = [a , b , c , d , e , f , h , i , j]

Acc-23© Gunnar Gotshalks

Difference Lists

 S1 E1 S2 E2

(1) concat(S1 – E1 , S2 – E2 , S1 – E2) with E1 = S2

 L1 = [A , B , C] = [A , B , C | R1] – R1
L2 = [D , E] = [D , E | R2] – R2

Pattern match (1) with (2)
(2) concat([A , B , C | R1] – R1 , [D , E | R2] – R2 , CL)

Using E1 = S2 we get

 R1 = [D , E | R2]
 CL = [A , B , C , D , E | R2] – R2

Acc-24© Gunnar Gotshalks

Parts Explosion – Difference List 1

◊ partsofd (X , P) – P is the list of parts for item X

◊ partsdiff (X , Hole , P) – parts_of (X) || Hole = P

> Hole and P are reversed compared to Clocksin
& Mellish (v5) to better compare with
accumulator version.

 partsofd (X , P) :- partsdiff (X , [] , P).

> Base case we have a basic part, then the parts
list contains the part

 partsdiff (X , Hole , [X | Hole]) :- basicPart (X).

Acc-25© Gunnar Gotshalks

Parts Explosion – Difference List 2

> Not a base part, so we find the components of the
part

partsdiff (X , Hole , P) :- assembly (X , Subparts)

> parsdifflistd – parts_of (Subparts) || Hole = P

 , partsdifflist (Subparts , Hole , P).

Acc-26© Gunnar Gotshalks

Parts Explosion – Difference Lists 3

◊ parsdifflist (ListOfParts , Hole , P)
– parts_of (ListOfParts) || Hole = P

partsdifflist ([] , Hole , Hole).
 partsdifflist ([Head | Tail] , Hole , Total) :-

> Get the parts for the first on the list
 partsdiff (Head , Hole1 , Total)

> And catenate with the parts obtained from the
rest of the ListOfParts

 , partsdifflist (Tail , Hole , Hole1).

Acc-27© Gunnar Gotshalks

Compare Accumulator with Hole

partsof (X , P) :- partsacc (X , [] , P). Accumulator
partsofd (X , P) :- partsdiff (X , [] , P). Difference/Hole

partsacc (X , A , [X | A]) :- basicPart (X).
partsdiff (X , Hole , [X | Hole]) :- basicPart (X).

partsacc (X , A , P) :- assembly (X , Subparts)
 , partsacclist (Subparts , A , P).

partsdiff (X , Hole , P) :- assembly (X , Subparts)
 , partsdifflist (Subparts , Hole , P).

Acc-28© Gunnar Gotshalks

Compare Accumulator with Hole – 2

partsacclist ([] , A , A).
partsdifflist ([] , Hole , Hole).

partsacclist ([Head | Tail] , A , Total)
 :- partsacc (Head , A , HeadParts)

 , partsacclist (Tail , HeadParts , Total).

partsdifflist ([Head | Tail] , Hole , Total)
 :- partsdiff (Head , Hole1 , Total)

 , partsdifflist (Tail , Hole , Hole1).

