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listlen ( L , N )

◊ L is a list of length N if ...
 listlen ( [] ,  0 ).
 listlen ( [ H | T ] , N ) :-  listlen ( T , N1 ) , N is N1 + 1.

> On searching for the goal, the list is reduced to
empty

> On back substitution, once the goal is found,
the counter is incremented from 0

◊ Following is an example sequence of goals (left hand
column) and back substitution (right hand column)

 listlen( [ a, b, c ] ,  N ).  N  <== N1 + 1
listlen( [ b, c ] , N1 ).     N1 <== N2 + 1
listlen( [ c ] , N2 ).         N2 <== N3 + 1
listlen( [] , N3 ).             N3 <== 0
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Abstract the counter

◊ The following abstracts the counter part from listlen.
 addUp ( 0 ).
 addUp ( C )  :-  addUp ( C1 ) , C is C1 + 1.

◊ Notice the recursive definition occurs on a counter one
smaller than in the head.
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◊ An alternate method is to count on the way to the fixed point
value in the query

◊ The auxiliary counter accumulates the result on the way to the
goal.
adder ( C )  :-  adder ( 0 , C ).  ;Introduce auxiliary counter
adder ( C , C )  :-  nl , write ( 'a ' ).

> The goal is reached when the auxiliary counter
reaches the fixed point count value

adder ( Acc1 , C )  :-  write ( 'b ' ) , Acc2 is Acc1 + 1
                                                    , adder ( Acc2 , C ).

> The predicates in black always succeed, side effect is
to write to the terminal – can see order of rule
execution

Count Up
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listLen(L,N) – 2

◊ We can define list length using an accumulator
 listln ( L , N )  :-  lenacc ( L , 0 , N ).

>  Introduce the auxiliary counter – length of list L
when added to the accumulator is N

 lenacc ( [] , A , A ).
 lenacc ( [ H | T ] , A , N )  :-  A1 is A + 1

                                            , lenacc ( T , A1 , N ).

◊ Following is a sequence of goals
 listln  ( [ a , b , c ] ,  N ).

lenacc ( [ a ,  b , c ] , 0 , N ). N <== N1
lenacc ( [ b , c ] , 1 , N1 ).    N1 <== N2
lenacc ( [ c ] , 2 , N2 ).          N2 <== N3
lenacc ( [] , 3 , N3 ).             N3 <== 3
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Sum a List of Numbers – no accumulator

◊ sumList(List, Total) asserts List is a list of numbers
and Total = + / List .

sumList([], 0).
sumList(  [ First | Rest ], Total) :-

  sumList(Rest, Rest_total)
    , Total is First + Rest_total.
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Sum a List of Numbers – with accumulator

◊ sumList(List, Total) asserts List is a list of numbers
and Total = + / List .
» Use an accumulator
» Here sumList asserts   Total = (+ / List ) + Acc

sumList(List, Total) :- sumList(List, 0, Total).
sumList([], Acc, Acc).
sumList(  [ First | Rest ], Acc, Total) :-

  NewAcc is Acc + First
, sumList(Rest, NewAcc, Total).
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A base case stops recursion

◊ A base case is one that stops recursion
» This is a more general notion than the smallest

problem.

◊ Generate a sequence of integers from 0 to N, inclusive.
» Need to stop recursion when we have reached N.

numInRange(X,N) :- addUpToN(0,X,N).
addUpToN(X,X,_).
addUpToN(Acc,X,N) :- Acc < N

                       , Acc1 is Acc + 1
                                         , addUpToN(Acc1,X,N).

Base case, no recursion

Need guard to prevent
selecting this rule to
prevent recursion
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Accumulator – Using vs Not Using

◊ The definition styles reflect two alternate definitions for counting
» Recursion – counts (accumulates) on back substitution.

> Goal becomes smaller problem
> Do not use accumulator

» Iteration – counts up, accumulates on the way to the goal
> Accumulate from nothing up to the goal
> Goal “counter value” does not change

◊ Some problems require an accumulator
» Parts explosion problem
» Need intermediate results during accumulation

> Partial sums of a list of numbers
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Factorial using recursion

◊ Following is a recursive definition of factorial
 Factorial ( N )  =  N * Factorial ( N – 1 )
 

    factr ( N , F)  -- F is the factorial of N
 factr ( 0 , 1 ).
 factr ( N , F )  :-  J  is  N – 1  ,   factr ( J , F1 )

                         , F  is  N * F1.

◊ The problem  (J , F1) is a smaller version of (N , F)

◊ Work toward the fixed point of a trivial problem

◊ Does not work for  factr ( N ,120 )  and  factr ( N , F ).
» Cannot do arithmetic  J is N – 1  because N is

undefined.
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Factorial using iteration – accumulators

◊ An iterative definition of factorial
 facti ( N , F )  :-  facti ( 0 , 1 , N , F ).

facti ( N , F , N , F ).
facti ( I , Fi , N , F )  :-  invariant ( I , Fi , J , Fj )
                                   ,  facti ( J , Fj , N , F ).

 invariant ( I , Fi , J , Fj )  :-  J  is  I + 1 ,  Fj  is  J * Fi.

◊ The last two arguments are the goal and they remain the
same throughout.

◊ The first two arguments are the accumulator and they start
from a fixed point and accumulate the result

◊ Works for  queries  factr ( N ,120 )  and  factr ( N , F )
because values are always defined for the is operator.
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Fibonacci – Ordinary Recursion

◊ Following is a recursive definition of the fibonacci series.
For reference here are the first few terms of the series
 Index – 0   1   2   3   4    5   6    7    8    9  10    11    12

Value – 1  1   2    3   5   8  13  21  34  55  89  144  233
 Fibonacci ( N ) = Fibonacci ( N – 1 )

                            + Fibonacci ( N – 2 ).

 fib ( 0 , 1 ).
fib ( 1 , 1 ).
fib ( N , F )  :-  N1  is  N – 1 ,  N2  is  N – 2
                      ,  fib ( N1 , F1 ) , fib ( N2 , F2 )
                      ,  F  is  F1 + F2.

◊ Does not work for  queries  fib ( N , 8 )  and  fib ( N , F )
» Values for  is  operator are undefined.
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Fibonacci – Tail Recursion

◊ A tail recursive definition of the fibonacci series
> Tail recursion is equivalent to iteration

 fibt ( 0 , 1 ).
fibt ( 1 , 1 ).
fibt ( N , F )  :-  fibt ( 2 , 1 , 1 , N , F ).

 fibt ( N , Last2 , Last1 , N , F )  :-  F  is  Last2 + Last1.
 fibt ( I , Last2 , Last1 , N , F )  :-  J  is  I + 1
                                              ,  Fi  is  Last2 + Last1
                                              ,  fibt ( J , Last1 , Fi , N , F ).

◊ Works for  queries  factr ( N , 120 )  and  factr ( N , F )
»  values are always defined for is operator.
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Parts Explosion – The Problem 1

◊ Parts explosion is the problem of accumulating all the parts for a
product from a definition of the components of each part

◊ Consider a bicycle we could have
> the following basic components

 basicPart( spokes ).   basicPart( rim ).   basicPart( tire ).
 basicPart( inner_tube ).   basicPart( handle_bar ).
 basicPart( front_ fork ).  basicPart( rear_fork ).

> the following definitions for sub assemblies
 assembly( bike, [ wheel, wheel, frame ]  ).
 assembly( wheel, [ spokes, rim, wheel_cushion ]  ).
 assembly( wheel_cushion, [ inner_tube, tire ]  ).
 assembly( frame, [ handle_bar, front_fork, rear_fork ]  ).
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Parts Explosion – The Problem 2

◊ We are interest in obtaining a parts list for a bicycle.
 [ rear_ fork , front_ fork , handle_bar , tire

, inner_tube , rim , spokes , tire , inner_tube , rim
, spokes ]

> We have two wheels so there are two tires,
inner_tubes, rims and spokes.

◊ Using accumulators we can avoid wasteful re-computation
as in the case for the ordinary recursion definition of the
fibonacci series
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Parts Explosion – Accumulator 1

◊ partsof ( X ,P ) – P is the list of parts for item X

◊ partsacc ( X , A , P ) – parts_of ( X ) || A = P.
 partsof ( X , P )  :-  partsacc ( X , [] , P ).

> Basic part – parts list contains the part
 partsacc ( X , A , [ X | A ] )  :-  basicPart ( X ).

> Not a basic part – find the components of the part
 partsacc ( X , A , P )  :-  assembly ( X , Subparts ) ,

> parsacclist – parts_of ( Subparts ) || A = P
                                    partsacclist ( Subparts , A , P ).

||  is catenate
(math append)
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Parts Explosion –  Accumulator 2

◊ parsacclist ( ListOfParts , AccParts , P )
 –  parts_of ( ListOfParts ) || AccParts = P

> No parts ⇒ no change in accumulator
 partsacclist ( [] , A , A ).

 partsacclist ( [ Head | Tail ] , A , Total ) :-
> Get the parts for the first on the list

                       partsacc ( Head , A , HeadParts )

> And catenate with the parts obtained from the
rest of the ListOfParts

                      , partsacclist ( Tail , HeadParts , Total ).
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Reverse a list with an accumulator

◊ Define the predicate reverse ( List , ReversedList ) that
asserts ReversedList is the List in reverse order.

reverse ( List , Reversed ) :-
reverse ( List , [ ] , Reversed ) .

reverse ( [ ] , Reversed , Reversed ) .

reverse ( [ Head | Tail] ) || SoFar = Reversed
reverse ( [ Head | Tail ] , SoFar , Reversed ) :-

reverse ( Tail , [ Head | SoFar ] , Reversed ) .
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Reverse a list without accumulator

◊ Define the predicate reverse ( List , ReversedList ) that
asserts ReversedList is the List in reverse order.

reverse ( [ ] , [] ) .

reverse ( [ Head | Tail ] , ReversedList ) :-
reverse ( Tail , ReversedTail ) ,

   append ( ReversedTail , [ Head ] , ReversedList .

◊ Note the extra list traversal required by append compared
to the accumulator version.
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Difference Lists and Holes

◊ The accumulator in the parts explosion program is a stack
» Items are stored in the reverse order in which they

are found

◊ How do we store accumulated items in the same order in
which they are formed?
» Use a queue

◊ Difference lists with holes are equivalent to a queue
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Examples for Holes

◊ Consider the following list
 [ a , b , c , d  |  X ]

> X is a variable indicating the tail of the list.  It is
like a hole that can be filled in once a value for X
is obtained

◊ For example
   Res  =  [ a , b , c , d  |  X ]  ,  X  =  [ e , f ].

> Yields
Res = [ a , b , c , d , e , f ]
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Examples for Holes – 2

◊ Or could have the following with the hole going down the
list
 Res  =  [ a , b , c , d  |  X ]

> more goal searching gives   X  =  [ e , f  | Y ]
> more goal searching gives   Y  =  [ h , i , j ]
> Back substitution Yields

Res = [ a , b , c , d , e , f , h , i , j ]
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Difference Lists

                S1                   E1  S2                  E2

(1) concat( S1 – E1 , S2 – E2 , S1 – E2)  with E1 = S2

    L1 = [ A , B , C ]  = [ A , B , C  |  R1 ] – R1
L2 = [ D , E ] = [ D , E  |  R2 ] – R2

Pattern match (1) with (2)
(2) concat([ A , B , C  |  R1 ] –  R1 , [ D , E  | R2 ] – R2 , CL)

Using E1 = S2 we get

      R1 = [ D , E  | R2 ]
 CL = [ A , B , C  , D , E  | R2 ]  –  R2
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Parts Explosion – Difference List 1

◊ partsofd (X , P ) – P is the list of parts for item X

◊ partsdiff ( X , Hole , P ) – parts_of ( X ) || Hole = P

> Hole and P are reversed compared to Clocksin
& Mellish (v5) to better compare with
accumulator version.

 partsofd ( X , P )  :-  partsdiff ( X , [] , P ).

> Base case we have a basic part, then the parts
list contains the part

 partsdiff ( X , Hole , [ X | Hole ] )  :-  basicPart ( X ).
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Parts Explosion – Difference List 2

> Not a base part, so we find the components of the
part

 

partsdiff ( X , Hole , P )  :-  assembly ( X , Subparts )

> parsdifflistd – parts_of ( Subparts ) || Hole = P

                             ,  partsdifflist ( Subparts , Hole , P ).
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Parts Explosion – Difference Lists 3

◊ parsdifflist (ListOfParts , Hole , P )
–  parts_of ( ListOfParts ) || Hole = P

 

partsdifflist ( [] , Hole , Hole ).
 partsdifflist ( [ Head | Tail ] , Hole , Total ) :-

> Get the parts for the first on the list
                         partsdiff ( Head , Hole1 , Total )

> And catenate with the parts obtained from the
rest of the ListOfParts

                      ,  partsdifflist ( Tail , Hole , Hole1 ).
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Compare Accumulator with Hole

partsof   ( X ,  P )  :-  partsacc   ( X ,  [] ,  P ).      Accumulator
partsofd ( X , P )   :-  partsdiff  ( X ,  [] ,  P ).      Difference/Hole

partsacc   ( X ,   A    ,  [ X | A ] )      :-  basicPart ( X ).
partsdiff ( X , Hole , [ X | Hole ] )   :-  basicPart ( X ).

partsacc   ( X ,  A     , P )  :-  assembly (  X ,  Subparts )
                                             ,  partsacclist  ( Subparts ,  A     , P ).

partsdiff ( X , Hole , P )  :-   assembly (  X ,  Subparts )
                                            ,  partsdifflist ( Subparts , Hole , P ).
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Compare Accumulator with Hole – 2

partsacclist  ( []  ,     A    ,   A    ).
partsdifflist (  []  ,  Hole , Hole ).

partsacclist   ( [ Head | Tail ] ,   A    , Total )
                        :-  partsacc  ( Head ,    A     , HeadParts )

                               ,  partsacclist  ( Tail , HeadParts , Total ).

partsdifflist ( [ Head | Tail ] , Hole , Total )
                       :-  partsdiff ( Head ,  Hole1 ,     Total      )

                            ,   partsdifflist ( Tail  ,    Hole   ,  Hole1 ).


